Ta có \(BB' \bot d,CC' \bot d \Rightarrow BB'//CC'\) nên \(BB'C'C\) là hình thang.
M là trung điểm của BC (gt), \(MM' \bot d \Rightarrow MM'// BB'// CC'\) nên \(MM'\) là đường trung bình của hình thang \(BB'C'C\) ta có:
\(MM' = \dfrac{BB' + CC'} { 2}\)
\(\Rightarrow BB' + CC' = 2MM'.\)
Lại có \(\Delta AA'I = \Delta MM'I\) (cạnh huyền – góc nhọn) \( \Rightarrow AA' = MM'.\)
Vậy \(BB' + CC' = 2AA'.\)