Bài 1.
a. Gọi I là trung điểm của BC. Các tam giác vuông BFC và BEC lần lượt có các trung tuyến là IF và IE nên:
\(\eqalign{ & IF = IE = {1 \over 2}BC \cr & hay\,IB = IF = IE = IC \cr} \)
Chứng tỏ bốn điểm B, F, E, C thuộc cùng một đường tròn tâm I là trung điểm của BC.
b. Ta có: ∆ABA’ nội tiếp đường tròn có đường kính AA’ nên ∆ABA’ vuông tại B hay AB ⊥ A’B.
Lại có CH ⊥ AB (gt)
Do đó CH // A’B. Chứng minh tương tự ta có: AH // A’C
Vậy tứ giác BHCA’ là hình bình hành.
Lưu ý: Chứng minh tương tự như câu a, chúng ta sẽ có bốn điểm A, F, H, E thuộc cùng một đường tròn.
Bài 2.
Ta có: AB ⊥ AC (gt) nên ∆ABC là tam giác vuông nội tiếp đường tròn (O). Do đó BC là đường kính của đường tròn (O) nên BC đi qua O. Hay ba điểm B, O, C thẳng hàng.