Đề kiểm tra 15 phút - Đề số 2 - Bài 9 - Chương 1 - Đại số 9

Bài 1. Chứng minh rằng : \(\root 3 \of {{a \over {{b^2}}}}  = {1 \over b}\root 3 \of {ab} \,\left( {b \ne 0} \right)\)

Bài 2. Tìm x, biết : \(\root 3 \of {x - 5}  + 3 = 0\)

Bài 3. So sánh : \(2\root 3 \of 3 \) và \(\root 3 \of {23} \)

Bài 4. Trục căn thức ở mẫu số : \({1 \over {2\root 3 \of 2 }}\)

Lời giải

Bài 1. Ta có: \(\root 3 \of {{a \over {{b^2}}}}  = \root 3 \of {{{ab} \over {{b^3}}}}  = {{\root 3 \of {ab} } \over {\root 3 \of {{b^3}} }} = {1 \over b}\root 3 \of {ab} \,\,\left( {đpcm} \right)\)

Bài 2. Ta có:

\(\eqalign{  & \root 3 \of {x - 5}  + 3 = 0 \Leftrightarrow \root 3 \of {x - 5}  =  - 3  \cr  &  \Leftrightarrow {\left( {\root 3 \of {x - 5} } \right)^3} = {\left( { - 3} \right)^3}\cr& \Leftrightarrow x - 5 =  - 27  \cr  &  \Leftrightarrow x =  - 22 \cr} \)

Bài 3. Ta có:

\(2\root 3 \of 3  > \root 3 \of {23}  \Leftrightarrow {\left( {2\root 3 \of 3 } \right)^3} > {\left( {\root 3 \of {23} } \right)^3} \)\(\Leftrightarrow {2^3}.3 > 23\)

\(⇔ 24 > 23\) (luôn đúng)

Bài 4. Ta có: \({1 \over {2\root 3 \of 2 }} = {{1{{\left( {\root 3 \of 2 } \right)}^2}} \over {2{{\left( {\root 3 \of 2 } \right)}^3}}} = {{\root 3 \of 4 } \over 4}\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”