Câu 1: Giá trị của \(\lim \dfrac{1}{{{n^k}}}\,(k \in {\mathbb{N}^*})\)bằng
A.0 B. 2
C. 4 D. 5
Câu 2: Giá trị đúng của \(\lim ({3^n} - {5^n})\) là:
A. \( + \infty \) B. \( - \infty \)
C. 2 D. -2
Câu 3: Giá trị của \(\lim \dfrac{{{{\sin }^2}n}}{{n + 2}}\)bằng
A.0 B. 3
C. 5 D. 8
Câu 4: Tính giới hạn của dãy số \({u_n} = q + 2{q^2} + ... + n{q^n};\,\,\left| q \right| < 1\)
A. \( + \infty \) B. \( - \infty \)
C. \(\dfrac{q}{{{{(1 - q)}^2}}}\) D. \(\dfrac{q}{{{{(1 + q)}^2}}}\)
Câu 5: Giá trị của \(\lim (2n + 1)\)bằng
A. \( + \infty \) B. \( - \infty \)
C. 0 D. 1
Câu 6: Tính \(\lim (\sqrt {4{n^2} + n + 1} - 2n)\)
A. \( + \infty \) B. \( - \infty \)
C. 3 D. \(\dfrac{1}{4}\)
Câu 7: Giá trị của \(A = \lim \dfrac{{n - 2\sqrt n }}{{2n}}\) bằng
A. \( + \infty \) B. \( - \infty \)
C. \(\dfrac{1}{2}\) D. 1
Câu 8: Giá trị của \(A = \lim \dfrac{{{{(2{n^2} + 1)}^4}{{(n + 2)}^9}}}{{{n^{17}} + 1}}\) bằng
A. \( + \infty \) B. \( - \infty \)
C. 16 D. 1
Câu 9: Tính giới hạn của dãy số \({u_n} = \dfrac{{(n + 1)\sqrt {{1^3} + {2^3} + ... + {n^3}} }}{{3{n^3} + n + 2}}\)
A. \( + \infty \) B. \( - \infty \)
C. \(\dfrac{1}{9}\) D. 1
Câu 10: Tính giới hạn: \(\lim \left[ {\dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + ... + \dfrac{1}{{n(n + 2)}}} \right]\)
A.1 B.0
C. \(\dfrac{2}{3}\) D. \(\dfrac{3}{4}\)