Đề kiểm tra 15 phút - Đề số 2 - Chương III - Hình học 12

Câu 1: Cho điểm \(M\left( { - 2;5;0} \right)\), hình chiếu vuông góc của điểm \(M\)trên trục \(Oy\) là điểm

A. \(M'\left( {2;5;0} \right)\).        B. \(M'\left( {0; - 5;0} \right)\).    

 C. \(M'\left( {0;5;0} \right)\).       D. \(M'\left( { - 2;0;0} \right)\).

Câu 2: Cho điểm \(M\left( {1;2; - 3} \right)\), hình chiếu vuông góc của điểm \(M\)trên mặt phẳng \(\left( {Oxy} \right)\)là điểm

A. \(M'\left( {1;2;0} \right)\).           B. \(M'\left( {1;0; - 3} \right)\).

C. \(M'\left( {0;2; - 3} \right)\).        D. \(M'\left( {1;2;3} \right)\).

Câu 3: Cho điểm \(M\left( { - 2;5;1} \right)\), khoảng cách từ điểm \(M\) đến trục \(Ox\) bằng

A. \(\sqrt {29} \)           B. \(\sqrt 5 \).

C. 2.                D. \(\sqrt {26} \).

Câu 4: Cho hình chóp tam giác \(S.ABC\) với \(I\) là trọng tâm của đáy \(ABC\). Đẳng thức nào sau đây là đẳng thức đúng

A. \(\overrightarrow {IA}  = \overrightarrow {IB}  + \overrightarrow {IC} .\)       

B. \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {CI}  = \overrightarrow 0 .\)           

C. \(\overrightarrow {IA}  + \overrightarrow {BI}  + \overrightarrow {IC}  = \overrightarrow 0 .\)          

D. \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  = \overrightarrow 0 .\)

Câu 5: Trong không gian \(Oxyz\), cho 3 vectơ  \(\mathop a\limits^ \to   = \left( { - 1;1;0} \right)\); \(\mathop b\limits^ \to   = \left( {1;1;0} \right)\); \(\mathop c\limits^ \to   = \left( {1;1;1} \right)\). Trong các mệnh đề sau, mệnh đề nào sai:

A. \(\overrightarrow b  \bot \overrightarrow c .\)          B. \(\overrightarrow {\left| a \right|}  = \sqrt 2 .\)

C. \(\overrightarrow {\left| c \right|}  = \sqrt 3 .\)       D. \(\overrightarrow a  \bot \overrightarrow b .\)

Câu 6: Trong không gian \(Oxyz\), gọi \(\overrightarrow i ,\,\overrightarrow j ,\,\overrightarrow k \) là các vectơ đơn vị, khi đó với \(M\left( {x;y;z} \right)\) thì \(\overrightarrow {OM} \) bằng

A. \( - x\overrightarrow i  - y\overrightarrow j  - \overrightarrow z k.\)   

B. \(x\overrightarrow i  - y\overrightarrow j  - \overrightarrow z k.\)

C. \(x\overrightarrow j  + y\overrightarrow i  + \overrightarrow z k.\) 

D. \(x\overrightarrow i  + y\overrightarrow j  + \overrightarrow z k.\)

Câu 7: Tích có hướng của hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\),\(\overrightarrow b  = ({b_1};\,{b_2};\,{b_3})\)là một vectơ, kí hiệu \(\,\left[ {\vec a,\vec b} \right]\,\), được xác định bằng tọa độ

A. \(\left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right).\)

B. \(\left( {{a_2}{b_3} + {a_3}{b_2};{a_3}{b_1} + {a_1}{b_3};{a_1}{b_2} + {a_2}{b_1}} \right).\)

C. \(\left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} + {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right).\)

D. \(\left( {{a_2}{b_2} - {a_3}{b_3};{a_3}{b_3} - {a_1}{b_1};{a_1}{b_1} - {a_2}{b_2}} \right).\)

Câu 8: Cho các vectơ \(\overrightarrow u  = \left( {{u_1};{u_2};{u_3}} \right)\) và \(\overrightarrow v  = \left( {{v_1};{v_2};{v_3}} \right)\), \(\overrightarrow u .\overrightarrow v  = 0\) khi và chỉ khi

A. \({u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 1\).                      

B. \({u_1} + {v_1} + {u_2} + {v_2} + {u_3} + {v_3} = 0\).

C. \({u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\).                      

D.\({u_1}{v_2} + {u_2}{v_3} + {u_3}{v_1} =  - 1\).  

Câu 9 : Cho vectơ \(\overrightarrow a  = \left( {1; - 1;2} \right)\), độ dài vectơ \(\overrightarrow a \) là

A. \(\sqrt 6 \).                 B. 2.           

C. \( - \sqrt 6 \).               D. 4.                       

Câu 10: Trong không gian \(Oxyz\), cho điểm \(M\) nằm trên trục \(Ox\) sao cho \(M\) không trùng với gốc tọa độ, khi đó tọa độ điểm \(M\)có dạng

A. \(M\left( {a;0;0} \right),a \ne 0\).  

B. \(M\left( {0;b;0} \right),b \ne 0\).  

C. \(M\left( {0;0;c} \right),c \ne 0\).  

D. \(M\left( {a;1;1} \right),a \ne 0\) .

Lời giải

Câu

1

2

3

4

5

Đáp án

C

A

D

D

A

Câu

6

7

8

9

10

Đáp án

D

A

C

A

A

Câu 1: Với \(M\left( {a;b;c} \right) \Rightarrow \) hình chiếu vuông góc của \(M\) lên trục \(Oy\) là \({M_1}\left( {0;b;0} \right)\)          

Chọn C

Câu 2: Với \(M\left( {a;b;c} \right) \Rightarrow \) hình chiếu vuông góc của \(M\)lên mặt phẳng\(\left( {Oxy} \right)\) là \({M_1}\left( {a;b;0} \right)\)

Chọn A          

Câu 3: Với \(M\left( {a;b;c} \right) \Rightarrow d\left( {M,Ox} \right) = \sqrt {{b^2} + {c^2}} \)

Do đó: \(d\left( {M,Ox} \right) = \sqrt {{5^2} + {1^2}}  = \sqrt {26} \)

Chọn D

Câu 4: Tính chất trong tâm tam giác: \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  = \overrightarrow 0 .\)

Chọn D

Câu 5: Vì \(\overrightarrow b .\overrightarrow c  = 1.1 + 1.1 + 0.1 = 2 \ne 0.\)

Do đó \(\overrightarrow b  \bot \overrightarrow c \) là mệnh đề sai

Chọn A

Câu 9: \(\left| {\overrightarrow a } \right| = \sqrt {{1^2} + {{( - 1)}^2} + {2^2}}  = \sqrt 6 \)

Chọn A.

Câu 10: \(M \in Ox \ne 0 \Rightarrow M\left( {a;0;0} \right),a \ne 0\)

Chọn A.


Bài Tập và lời giải

Bài 11 trang 10 SBT toán 7 tập 2
Tính số trung bình cộng và tìm mốt của dãy giá trị sau bằng cách lập bảng: 

Xem lời giải

Bài 12 trang 10 SBT toán 7 tập 2

Đề bài

Theo dõi nhiệt độ trung bình hàng năm của hai thành phố A và B từ năm 1956 đến năm 1975 (đo theo độ C) người ta lập được các bảng sau: 

+) Đối với thành phố A 

Nhiệt độ trung bình (x)

23

24

25

26

 

Tần số (n)

  5

   12

     2

    1

N =20

+) Đối với thành phố B 

Nhiệt độ trung bình (x)

23

24

25

 

Tần số (x)

7

10

3

N=20

Hãy so sánh nhiệt độ trung bình hàng năm giữa hai thành phố.

Xem lời giải

Bài 13 trang 10 SBT toán 7 tập 2

Đề bài

Hai xạ thủ A và B cùng bắn 20 phát đạn, kết quả ghi lại được dưới đây: 

a) Tính điểm trung bình của từng xạ thủ.

b) Có nhận xét gì về kết quả và khả năng của từng người.

Xem lời giải

Bài 4.1, 4.2 phần bài tập bổ sung trang 11 SBT toán 7 tập 2

Bài 4.1

Tổng số áo sơ mi mà một cửa hàng bán trong một ngày được thống kê lại trong bảng sau: 

Cỡ áo

37

38

39

40

41

Số áo bán được

4

7

10

3

1

 

a) Số áo bán được là bao nhiêu?

b)  Mốt của dấu hiệu là:

(A) 41;                         (B) 10; 

(C) 39;                         (D) 25. 

Hãy chọn phương án đúng.

Phương pháp:

+) Tính tổng số áo bán được bằng tổng số áo bán được của các cỡ áo.

+) Mốt của dấu hiệu là giá trị có tần số lớn nhất trong bảng “tần số”, kí hiệu là \({M_0}.\)

Có những dấu hiệu có hai mốt hoặc nhiều hơn.

Xem lời giải