Bài 1:
\(7 + {7 \over {12}} - {1 \over 2} + 3 - {1 \over {12}} - 5\)
\(= {7 \over {12}} - {1 \over {12}} + 7 + 3 - 5 - {1 \over 2}\)
\( = {6 \over {12}} + 5 - {1 \over 2} = {1 \over 2} - {1 \over 2} + 5 = 5.\)
Bài 2: Ta có:
\( {1 \over 2} - \left( {{1 \over 3} + {1 \over 4}} \right) = {1 \over 2} - {1 \over 3} - {1 \over 4} = {{6 - 4 - 3} \over {12}} \)\(\;= {{ - 1} \over {12}}; \)
\({1 \over {48}} - \left( {{1 \over {16}} - {1 \over 6}} \right) = {1 \over {48}} - {1 \over {16}} + {1 \over 6} \)\(\;= {{1 - 3 + 8} \over {48}} = {6 \over {48}} = {1 \over 8}. \)
Vậy: \( - {1 \over {12}} < x < {1 \over 8}\). Vì \(x \in\mathbb Z\) nên \(x = 0.\)