Bài 1: Bậc của P là 3, vì hạng tử \(2a{x^2}\) có bậc cao nhất và bậc là 3.
Bài 2: \(A = (3 - 9)x{y^2} + (4 - 3){x^3} + (4 - 5){x^2}y\)\(\; = - 6{\rm{x}}{y^2} + {x^3} - {x^2}y.\)
Thay \(x = - 2;y = - 1\) vào biểu thức A, ta được:
\(A = - 6( - 2){( - 1)^2} + {( - 2)^3} - {( - 2)^2}( - 1) \)\(\;= 12 - 8 + 4 = 8.\)
Bài 3: \(M = {3 \over 2}{x^2}{y^4} + ( - 5 + 3 + 2)x{y^3} + 1 \)\(\;= {3 \over 2}{x^2}{y^4} + 1.\)
Vì \({3 \over 2}{x^2}{y^4} \ge 0\) với mọi \(x;y\) \( \Rightarrow M = {3 \over 2}{x^2}{y^4} + 1 > 0\), với mọi \(x;y.\)
Bài 4: Thay \(y = - x\) vào biểu thức P, ta được:
\(P = {1 \over 2}{x^2}( - x) + 2{\rm{x( - x}}{{\rm{)}}^2} + 1 \)\(\;= - {1 \over 2}{x^3} + 2{{\rm{x}}^3} + 1 = {3 \over 2}{x^3} + 1.\)