Bài 1.
a) \(MTC = {a^3} + {b^3} \)\(\;= \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right).\)
Vậy \({{a + b} \over {{a^2} - ab + {b^2}}} - {1 \over {a + b}} = {{{{\left( {a + b} \right)}^2} - \left( {{a^2} - ab + {b^2}} \right)} \over {{a^3} + {b^3}}}\)
\( = {{{a^2} + 2ab + {b^2} - {a^2} + ab - {b^2}} \over {{a^3} - {b^3}}} = {{3ab} \over {{a^3} - {b^3}}}.\)
b) \(MTC = {m^3} - 27 \)\(\;= \left( {m - 3} \right)\left( {{m^2} + 3m + 9} \right).\)
Vậy \({{{m^2} - 3m + 9} \over {{m^3} - 27}} - {1 \over {m - 3}} = {{{m^2} - 3m + 9 - \left( {{m^3} + 3m + 9} \right)} \over {{m^3} - 27}}\)
\( = {{{m^3} - 3m + 9 - {m^2} - 3m - 9} \over {{m^3} - 27}} = {{ - 6m} \over {{m^3} - 27}}.\)
Bài 2.
\(MTC = {a^2} + 2a = a\left( {a + 2} \right).\)
Ta có: \(\left( {a - 2} \right) + {{4a} \over {a + 2}} - {{{a^3} + b} \over {{a^2} + 2a}} \)
\(\;= {{\left( {a - 2} \right)\left( {{a^2} + 2a} \right) + 4{a^2} - \left( {{a^3} + b} \right)} \over {a\left( {a + 2} \right)}}\)
\( = {{{a^3} + 2{a^2} - 2{a^2} - 4a + 4{a^2} - {a^3} - b} \over {a\left( {a + 2} \right)}} = {{4{a^2} - 4a - b} \over {{a^2} + 2a}}.\)