Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 4 – Đại số 7

Đề bài

Bài 1: Thu gọn và cho biết bậc của đơn thức:

a) \({\rm{A}} = 2{x^2}.{1 \over 2}{y^3} - 1{1 \over 4}y.{4 \over 5}{x^2}{y^2};\)

b) \({\rm{B}} = {1 \over 2}{a^3}{b^2} + \left( {{4 \over 3}a{b^2}} \right)\left( { - {1 \over 2}{a^2}} \right)\).

Bài 2: Tìm đơn thức A, biết:\({\rm{A + 5}}{x^3}{y^3}z =  - 3{x^3}{y^3}z\).  

Bài 3: Chứng tỏ rằng \(( - 3x)x{y^2} + {( - 2xy)^2}\) luôn luôn không âm với mọi giá trị của \(x,y\).

Lời giải

Bài 1:

a) \({\rm{A}} =  - 3{x^3}{y^3}z - 5{x^3}{y^3}z =  - 8{x^3}{y^3}z.\) Đơn thức A có bậc là 3.

b) \({\mathop{\rm B}\nolimits}  = 3{x^6} - 4{x^6} =  - {x^6}\). Đơn thức B có bậc là 6.

Bài 2: Ta có: \({\rm{A}} =  - 3{x^3}{y^3}z - {\rm{5}}{x^3}{y^3}z =  - 8{x^3}{y^3}z\).

Bài 3: Ta có: \(( - 3x)x{y^2} + {( - 2xy)^2} \)\(\;=  - 3{x^2}{y^2} + 4{x^2}{y^2} = {x^2}{y^2}\).

Vì \({x^2} \ge 0\) và \({y^2} \ge 0\), với mọi \(x;y\), nên \({x^2}{y^2} \ge 0,\) với mọi \(x;y\).   


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”