Đề kiểm tra 15 phút - Đề số 5 - Bài 5 - Chương 1 - Đại số 8

Bài 1. Rút gọn biểu thức: \(A = \left( {2x + 3y} \right)\left( {4{x^2} - 6xy + 9{y^2}} \right).\)

Bài 2. Tìm x, biết: \(\left( {4{x^2} + 2x + 1} \right)\left( {2x - 1} \right) - 4x\left( {2{x^2} - 3} \right) = 23.\)

Bài 3. Cho \(a - b = 1\) và \(ab = 6\) . Tính \({a^3} - {b^3}\) .

Lời giải

Bài 1. Ta có: \(A = {\left( {2x} \right)^3} + {\left( {3y} \right)^3} = 8{x^3} + 27{y^3}.\)

Bài 2. Ta có:

\(\left( {4{x^2} + 2x + 1} \right)\left( {2x - 1} \right) - 4x\left( {2{x^2} - 3} \right)\)

\( = {\left( {2x} \right)^3} - {1^3} - 4x\left( {2{x^2} - 3} \right) \)

\(= 8{x^3} - 1 - 8{x^3} + 12x = 12x - 1\)

Vậy : \(12x - 1 = 23 \Rightarrow 12x = 24 \Rightarrow x = 2.\)

Bài 3. Ta có:

\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) \)

\(= \left( {a - b} \right)\left[ {{{\left( {a - b} \right)}^2} + 3ab} \right]\)

\( = 1.\left[ {{1^2} + 3.6} \right] = 19.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”