a) Gọi I là giao điểm của trung trực d1 và AB.
Tương tự H là giao điểm của d2 và AC.
Ta có \(IA = IB = \dfrac{1 }{ 2}AB\) và \(HA = HB =\dfrac {1}{ 2}AC\) mà AB = AC (giả thiết)
\( \Rightarrow IA = IB = HA = HC.\)
Xét \(\Delta AIO\) và \(\Delta AHO\) có:
+) \(\widehat {AIO} = \widehat {AHO} = {90^o}\) (giả thiết)
+) AO: cạnh chung;
+) AI = AH (chứng minh trên)
Vậy \(\Delta AIO = \Delta AHO\) (ch.cgv)
\( \Rightarrow \widehat {OAI} = \widehat {OAH}\) (góc tương ứng) hay AO là phân giác của góc A.
b) \(AB \bot KB\) (giả thiết), \(AC \bot KC\) (giả thiết).
Xét hai tam giác vuông AKB và ACK có:
+) AK cạnh chung,
+) \(AB = AC\) (giả thiết)
\( \Rightarrow \Delta ABK = \Delta ACK\) (ch.cgv)
\( \Rightarrow \widehat {KAB} = \widehat {KAC}\) hay AK là phân giác của góc A.
Hai điểm A và K cùng thuộc tia phân giác của góc A nên A, O, K thẳng hàng.