Kẻ \(NP//AB\) ta có:
\(\widehat {NPC} = \widehat B\) (đồng vị) mà \(\widehat B = \widehat C\left( {gt} \right)\)
\( \Rightarrow \widehat {NPC} = \widehat C\) hay \(\Delta NPC\) cân
Do đó tứ giác ANPM là hình bình hành có I là trung điểm của MN
\( \Rightarrow I\) là trung điểm của AP.
Kẻ IH và AK cùng vuông góc với BC ta có IH là đường trung bình của \(\Delta AKP\) nên \({\rm{IH}} = \dfrac{1 }{2}AK\) (không đổi)
Vậy tập hợp các trung điểm I của MN khi M, N di động trên AB và AC là đường trung bình DE của \(\Delta ABC\) với \(DE//CF.\)