Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Hình học 8

Bài Tập và lời giải

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 1 - Chương 1 - Hình học 8

Bài 1. Cho hình thoi ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.

a) Chứng minh \(\Delta AOM = \Delta CON\).

b) Chứng tỏ tứ giác AMCN là hình bình hành.

Bài 2. Cho tam giác ABC vuôn tại A có đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối  xứng với M qua D.

a) Chứng minh tứ giác AEBM là hình thoi.

b) Gọi I là trung điểm AM. Chứng minh E, I, C thẳng hàng.

c) \(\Delta ABC\) có thêm điều kiện gì thì AEBM là hình vuông.

Xem lời giải

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 2 - Chương 1 - Hình học 8

Bài 1. Cho hình thoi MNPQ. Gọi O là giao điểm của hai đường chéo. Kẻ \(NE \bot PQ\left( {E \in PQ} \right),\)  \(QF \bot MN\left( {F \in MN} \right).\)

a) Chứng tỏ tứ giác NEQF là hình chữ nhật.

b) Chứng tỏ MP, NQ, EF đồng quy.

Bài 2. Cho hình chữ nhật ABCD có AB = 2AD. Vẽ BH vuông góc với AC. Gọi M, N, P lần lượt là trung điểm của AH, BH và CD.

a) Chứng minh tứ giác MNCP là hình bình hành.

b) Chứng minh rằng: \(MP \bot MB.\)

c) Gọi I là trung điểm của PB và J là giao điểm của MC và NP. Chứng minh rằng: \(MI - {\rm{IJ}} < JP.\)

Xem lời giải

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 3 - Chương 1 - Hình học 8

Bài 1. Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD, I là trung điểm của cạnh AB, J là trung điểm của DC.

a) Chứng tỏ AJ = CI.

b) Chứng tỏ O là trung điểm của đoạn IJ.

Bài 2. Cho hình thoi ABCD có hai dường chéo cắt nhau tại O. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. Nối ED cắt AC tại I và BC ở F.

a) Chứng minh ID = 2IF.

b) Nối EO cắt BC ở G, đường thẳng OF cắt EC ở H. Chứng minh ba điểm A, G, H thẳng hàng.

c) Biết \(\widehat {BAD} = {60^ \circ },AB = a.\) Tính diện tích hình thoi ABCD theo a.

Xem lời giải

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 4 - Chương 1 - Hình học 8

Bài 1. Cho hình thoi ABCD có O là giao điểm hai đường chéo. Gọi I là trung điểm cạnh BC và E là trung điểm đối xứng với O qua I.

a)Tứ giác OBEC là hình gì ? Tại sao ?

b)Chứng tỏ E đối xứng với A qua trung điểm J của đoạn OB.

Bài 2. Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm của BC. Qua I vẽ \(IM \bot AB\) tại \(IN \bot AC\) tại N.

a)Chứng minh AMIN là hình chữ nhật.

b)Gọi D là điểm đối xứng của I qua N. Chứng minh ADCI là hình thoi.

c)Đường thẳng BN cắt DC tại K. Chứng minh \({{DK} \over {DC}} = {1 \over 3}.\)

Xem lời giải

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 5 - Chương 1 - Hình học 8

Bài 1. Cho tam gác ABC (AB < AC < BC), đường cao AH. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, BC và AC. Gọi I là giao điểm của DF và AE.

a)Chứng  minh tứ giác DFEH là hình thang cân.

b)Chứng minh I là trung điểm của DF.

Bài 2. Cho hình chữ nhật ABCD (AB > AD). Trên cạnh AD, BC lần lượt lấy các điểm M và N sao cho AM = CN.

a) Chứng minh rằng: \(BM\parallel DN.\)

b) Gọi O là trung điểm của BD. Chứng minh AC, BD, MN đồng quy tại O.

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt cạnh AB tại P, cắt cạnh CD tại Q. Chứng minh rằng PBQD là hình thoi.

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. Chứng minh rằng: \(AC \bot CK.\)

Xem lời giải

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 6 - Chương 1 - Hình học 8

Bài 1. Cho tam giác ABC nhọn, trung tuyến AD. Kẻ DN song song với AB \(\left( {N \in AC} \right)\). Kẻ DM song song với AC \(\left( {M \in AB} \right).\) MN cắt AD tại O.

a) Chứng minh A và D đối xứng với nhau qua điểm O.

b) Tính độ dài MN khi BC = 16 cm.

Bài 2. Cho hình thoi ABCD tân O. Trên tia đối của các tia BA, CB, DC, AD lần lượt lấy các điểm E, F, G, H sao cho BE = CF = DG = AH.

a) Chứng minh tứ giác EFGH là hình bình hành.

b) Chứng minh điểm O là tâm đối xứng của hình bình hành EFGH.

c) Hình thoi ABCD phải có điều kiện gì để EFGH trở thành hình thoi?

Xem lời giải