Câu 1. Trong mặt phẳng tọa độ Oxy, cho điểm M là điểm biểu diễn cho số phức z = a + bi. Tính S = a + b.
A. S = 4 B. S = 1
C. S = 2 D. S = 3.
Câu 2. Điểm nào trong các điểm sau đây là điểm biểu diễn hình học của số phức z = - 5 + 4i trong mặt phẳng tọa độ Oxy.
A. A(- 5 ; 4). B. B(5 ; - 4 ).
C. C(4 ; - 5). D. D(4 ; 5).
Câu 3. Trong C, phương trình \({z^3} + 1 = 0\) có nghiệm là :
A. \(S = \{ - 1;\,\dfrac{{2 \pm i\sqrt 3 }}{2}\} \).
B. \(S = \{ - 1\} \).
C. \(S = \{ - 1;\dfrac{{5 \pm i\sqrt 3 }}{4}\} \).
D. \(S = \{ - 1;\dfrac{{1 \pm i\sqrt 3 }}{2}\} \).
Câu 4. Số phức z thỏa mãn \(|z| = 5\) và phần thực của z bằng hai lần phần ảo của nó.
A. \(\left[ \begin{array}{l}z = 2\sqrt 5 + i\sqrt 5 \\z = - 2\sqrt 5 - i\sqrt 5 \end{array} \right.\).
B. \(\left[ \begin{array}{l}z = - 2\sqrt 5 + i\sqrt 5 \\z = 2\sqrt 5 - i\sqrt 5 \end{array} \right.\).
C. \(\left[ \begin{array}{l}z = \sqrt 5 + 2\sqrt 5 i\\z = - \sqrt 5 - 2\sqrt 5 i\end{array} \right.\).
D. \(\left[ \begin{array}{l}z = - \sqrt 5 + 2\sqrt 5 i\\z = \sqrt 5 - 2\sqrt 5 i\end{array} \right.\).
Câu 5. Cho số phức z thỏa mãn \(|z - 2 - 2i| = 1\). Tập hợp điểm biểu diễn số phức z – i trong mặt phằng tọa độ là đường tròn có phương trình :
A. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 1\).
B. \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 1\).
C. \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 1\).
D. \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 1\)
Câu 6. Điểm biểu diễn cùa các số phức z = 7 + bi với \(b \in R\), nằm trên đường thẳng có phương trình là:
A. x = 7. B. y = 7.
C. y = x. D. y = x + 7.
Câu 7. Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = - 2 +5i. Tìm mệnh đề đúng trong các mệnh để sau:
A. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x.
B. Hai điểm A và B đối xứng với nhau qua trục hoành.
C. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O.
D. Hai điểm A và B đối xứng với nhau qua trục tung.
Câu 8. Biết rằng số phức liên hợp của z là \(\overline z = \left( {2 + 3i} \right) + \left( {4 - 8i} \right)\). Tìm số phức z.
A. \(z = - 6 - 5i\).
B. \(z = 6 + 5i\).
C. \(z = - 6 + 5i\).
D. \(z = 6 - 5i\).
Câu 9. Cho \(\overline z = \left( {5 - 2i} \right)\left( { - 3 + 2i} \right)\). Giá trị của \(2|z| - 5\sqrt {377} \) bằng :
A. \( - 10\sqrt {377} \). B. \(10\sqrt {377} \).
C. \(7\sqrt {377} \). D. \( - 3\sqrt {377} \).
Câu 10. Tìm số phức z biết \(|z| = 5\) và phần thực lớn hơn phần ảo một đơn vị .
A. \({z_1} = 3 + 4i\,,\,\,{z_2} = - 4 - 3i\).
B. \({z_1} = 4 + 3i\,,\,\,{z_2} = - 3 - 4i\).
C. \({z_1} = - 4 - 3i\,,\,\,{z_2} = 3 + 4i\)
D. \({z_1} = \left( {2\sqrt 3 + 1} \right) + 2\sqrt 3 \) \({z_2} = \left( { - 2\sqrt 3 + 1} \right) - 2\sqrt 3 i\)
Câu 11. Cho số phức z = a + bi và \(\overline z \) là số phức liên hợp của z. Chọn kết luận đúng.
A. \(z + \overline z = 2a\). B. \(z.\overline z = 1\).
C. \(z - \overline z = 2b\). D. \(z.\overline z = {z^2}\).
Câu 12. Cho các số phức \({z_1} = - 1 + i\,,\,\,{z_2} = 1 - 2i\,,\,\,{z_3} = 1 + 2i\). Giá trị biểu thức \(T = |{z_1}{z_2} + {z_2}{z_3} + {z_3}{z_1}|\) là:
A. 1 B. \(\sqrt {13} \)
C. 5 D. 13
Câu 13. Cho hai số phức \({z_1} = 3 - 2i\) \({z_2} = \left( {{a^2} + a + 1} \right) + \left( {2{a^2} + 3a - 4} \right)i\). Tìm \(a \in R\) để \({z_1} = {z_2}\).
A. a = -3. B. a = 1.
C. a = - 1 . D. a = - 2 .
Câu 14. Kí hiệu a, b lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm a , b.
A. a = 3 , b = 2.
B. a = 3 , b = \(2\sqrt 2 \).
C. a = 3 , b = \(\sqrt 2 \).
D. a = 3 , b = \( - 2\sqrt 2 \).
Câu 15. Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z - 2i| = 4\) là:
A. Đường tròn tâm I(1 ; - 2), bán kính R = 4.
B. Đường tròn tâm I(1 ; 2), bán kính R = 4.
C. Đường tròn tâm I(0 ; 2), bán kính R = 4.
D. Đường tròn tâm I(0 ; -2), bán kính R = 4.
Câu 16. Xác định số phức z thỏa mãn \(|z - 2 - 2i| = \sqrt 2 \) mà \(|z|\) đạt giá trị lớn nhất.
A. z = 1 + i.
B. z = 3 + i.
C. z = 3 + 3i.
D. z = 1+ 3i.
Câu 17. Cho số phức \(z = r\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\). Chọn 1 acgumn của z:
A. \( - \dfrac{\pi }{4}\) B. \(\dfrac{{5\pi }}{4}\)
C. \(\dfrac{{9\pi }}{4}\) D. \( - \dfrac{{5\pi }}{4}\).
Câu 18. Cho số phức \(z = \dfrac{{1 + i}}{{2 - i}}\). Mô đun của z là:
A. \(\sqrt {\dfrac{2}{5}} \). B. \(\sqrt {\dfrac{5}{2}} \)
C. \(\dfrac{2}{5}\) D. \(\dfrac{5}{2}\).
Câu 19. Số phức z có mô đun r = 2 và acgumen \(\varphi = - \dfrac{\pi }{2}\) thì có dạng lượng giác là:
A. \(z = 2\left( {\cos \left( { - \dfrac{\pi }{2}} \right) + i\sin \left( { - \dfrac{\pi }{2}} \right)} \right)\).
B. \(z = 2\left( {\cos \left( { - \dfrac{\pi }{2}} \right) - i\sin \left( { - \dfrac{\pi }{2}} \right)} \right)\).
C. \(z = 2\left( {\cos \left( {\dfrac{\pi }{2}} \right) + i\sin \left( {\dfrac{\pi }{2}} \right)} \right)\).
D. \(z = 2\left( { - \cos \left( { - \dfrac{\pi }{2}} \right) + i\sin \left( { - \dfrac{\pi }{2}} \right)} \right)\).
Câu 20. Phương trình \({z^2} + az + b = 0\) nhận z = 1 – 2i làm nghiệm Khi đó a + b bằng:
A. 3 B. 4
C. 5 D. 6.
Câu 21. Gọi số phức z có dạng đại số và dạng lượng giác lần lượt là z = a + bi và \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\). Chọn mệnh đề đúng .
A. \(r = \sqrt {{a^2} + {b^2}} \).
B. \(r = {a^2} + {b^2}\).
C. \({r^2} = \sqrt {{a^2} + {b^2}} \).
D. \(r = |a + b|\).
Câu 22. Cho số phức z có dạng lượng giác \(z = 2\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\). Dạng lượng giác của z là:
A. z = 2.
B. z = 2i.
C. z = -2 .
D. z = - 2i.
Câu 23. Trong mặt phẳng phức, A, B, C lần lượt là các điểm biểu diễn của các số phức \({z_1} = 1 + 2i\,,\,\,{z_2} = 2 + 3i\,,\,\,{z_3} = 3 + 4i\). Trọng tâm tam giác ABC là điểm :
A. G ( 2 ; -3 ).
B. G (2 ; 3).
C. G ( 3 ; 2).
D. G (-3 ;2).
Câu 24. Cho số phức z = 4 + 3i. Tìm phần thực và phần ảo của z.
A. Phần thực của z là 4, phần ảo của z là 3.
B. Phần thực của z là 4, phần ảo của z là 3i.
C. Phần thực của z là 3, phần ảo của z là 4.
D. Phần thực của z là 3, phần ảo của z là 4i.
Câu 25. Tổng của hai số phức \({z_1} = 2 + 3i\,,\,\,{z_2} = 5 - 6i\)là:
A. 7 – 3i.
B. 7 + 3i.
C. – 3 +9i.
D. 3 + 9i.