Bài 1.
Gọi O là giao điểm hai đường chéo AC và BD. Ta có:
\({S_{ADC}} = {1 \over 2}AC.OD\)
\({S_{ABC}} = {1 \over 2}AC.OB\)
\( \Rightarrow {S_{ADC}} + {S_{ABC}} = {1 \over 2}AC\left( {OD + OB} \right)\)
Hay \({S_{ABCD}} = {1 \over 2}AC.BD = {1 \over 2}.6.3,6 \)\(\,= 10,8\left( {c{m^2}} \right).\)
Cách 2: Sử dụng trực tiếp công thức tính diện tích tứ giác có hai đường chéo vuông góc.
Bài 2.
Kẻ đường cao BH. Ta có: \({S_{ADB}} + {S_{ADC}} = {S_{ABC}}\)
Hay \({1 \over 2}AB.DE + {1 \over 2}AC.DF = {1 \over 2}AC.BH\)
Vì \(AB = AC(gt)\)
\(\Rightarrow AC.DE + AC.CF = AC.BH\)
\( \Rightarrow AC\left( {DE + DF} \right) = AC.BH\)
\( \Rightarrow DE + DF = BH\) (không đổi).
Bài 3.
a) Ta có: \(\Delta BIM = \Delta CIN\left( {g.c.g} \right)\)
\(\Rightarrow {S_{BIM}} = {S_{CIN}}\)
Mà \({S_{ABCD}} = {S_{ABIND}} + {S_{CIN}}\)
\({S_{AMND}} = {S_{ABIND}} + {S_{BIM}}\)
\( \Rightarrow {S_{ABCD}} = {S_{AMND}}.\)
b) Ta có \(\widehat {AMN} = \widehat {MNC}\) (so le trong),
\(\widehat {MNC} = \widehat {DNK}\) (đối đỉnh)
\( \Rightarrow \widehat {AMN} = \widehat {DNK}\)
Lại có AH và DK cùng vuông góc với MN (gt) nên các tam giác AHM và DKN bằng nhau (cạnh huyền – góc nhọn)
\( \Rightarrow {S_{AHM}} = {S_{DKN}}.\)
Khi đó \({S_{AHKD}} = {S_{AHND}} + {S_{DKN}}\) và \({S_{AMND}} = {S_{AHND}} + {S_{AHM}}\)
\( \Rightarrow {S_{AHKD}} = {S_{AMND}}\) và \({S_{AMND}} = {S_{ABCD}} \Rightarrow {S_{ABCD}} = {S_{AHKD}}.\)