Bài 1. Ta có:
\(\eqalign{ A &= {{3\cot 77^\circ } \over {2\tan 13^\circ }} - {{{{\cos }^2}26^\circ + {{\cos }^2}64^\circ - {{\cos }^2}71^\circ - {{\cos }^2}19^\circ } \over {{{\sin }^2}34^\circ + {{\sin }^2}56^\circ + {{\sin }^2}15^\circ + {{\sin }^2}75^\circ }} \cr & = {{3\tan 13^\circ } \over {2\tan 13^\circ }} - {{{{\cos }^2}26^\circ + {{\sin }^2}26^\circ - {{\cos }^2}71^\circ - {{\sin }^2}71^\circ } \over {{{\sin }^2}34^\circ + {{\cos }^2}34^\circ + {{\sin }^2}15^\circ + {{\cos }^2}15^\circ }} \cr & = {3 \over 2} - {{1 - \left( {{{\cos }^2}71^\circ + {{\sin }^2}71^\circ } \right)} \over {1 + 1}}\cr& = {3 \over 2} - {{1 - 1} \over 2} = {3 \over 2} \cr} \)
Bài 2.
Gọi I là giao điểm của CB và DA
Khi đó ∆ICD vuông tại I (vì \(\widehat C + \widehat D = 30^\circ + 60^\circ = 90^\circ \)) và \(ID = {1 \over 2}CD\) (trong tam giác vuông cạnh đối diện góc 30˚ bằng nửa cạnh huyền).
Mặt khác ∆ICD vuông tại I, ta có:
\(IC = CD.\sin D = 5.\sin 60^\circ = {{5\sqrt 3 } \over 2}\,\left( {cm} \right)\)
Do đó: \({S_{ICD}} = {1 \over 2}IC.ID = {1 \over 2}.{{5\sqrt 3 } \over 2}.{5 \over 2} = {{25\sqrt 3 } \over 8}\,\left( {c{m^2}} \right)\)
Vì AB // CD (gt) nên:
\(\widehat {IAB} = \widehat D = 60^\circ \) (đồng vị)
và \(\widehat {IBA} = \widehat C = 30^\circ \)
Tương tự, trong ∆IAB vuông tại I, ta có:
\(\eqalign{ & IA = AB.\sin 30^\circ = 1.\sin 30^\circ = {1 \over 2}\,\left( {cm} \right) \cr & va\,IB = AB.\cos 30^\circ = 1.\cos 30^\circ = {{\sqrt 3 } \over 2}\,\left( {cm} \right) \cr} \)
Do đó: \({S_{IAB}} = {1 \over 2}IA.IB = {1 \over 2}.{1 \over 2}.{{\sqrt 3 } \over 2} = {{\sqrt 3 } \over 8}\,\left( {c{m^2}} \right)\)
Ta có: \({S_{ABCD}} = {S_{ICD}} - {S_{IAB}} \)\(\;= {{25\sqrt 3 } \over 8} - {{\sqrt 3 } \over 8} = {{24\sqrt 3 } \over 8} = 3\sqrt 3 \,\left( {c{m^2}} \right)\)
Bài 3.
a. Ta có: ∆ADC vuông tại D, đường cao DI nên :
\(A{D^2} = AC.AI\) (định lí 1) (1)
Tương tự: ∆AEB có đường cao EK:
\(A{E^2} = AB.AK\) (2)
Dễ thấy ∆AIB đồng dạng ∆AKC (g.g)
\(\eqalign{ & \Rightarrow {{AB} \over {AC}} = {{AI} \over {AK}} \cr & \Rightarrow AB.AK = AC.AI\,\left( 3 \right) \cr} \)
Từ (1), (2) và (3) \( \Rightarrow A{D^2} = A{E^2}\)
Vậy ∆ADE cân tại E.
b. Ta có: ∆ADC vuông :
\(DC = \sqrt {A{C^2} - A{D^2}} = \sqrt {{{10}^2} - {6^2}} = 8\,\left( {cm} \right)\)
Lại có DI là đường cao của tam giác vuông ADC, ta có:
\(C{D^2} = CA.CI\) (định lí 1)
\( \Rightarrow CI = {{C{D^2}} \over {CA}} = {{{8^2}} \over {10}} = 6,4\,\left( {cm} \right)\)
Do đó: \(AI = AC – CI = 10 – 6,4 = 3,6 (cm)\)
Ta có: \(DI.CA = DA.DC\) (định lí 3)
\( \Rightarrow DI = {{DA.DC} \over {AC}} = {{6.8} \over {10}} = 4,8\,\left( {cm} \right)\)
Vậy \({S_{ADI}} = {1 \over 2}AI.DI = {1 \over 2}.3,6.4,8 = 8,64\,\left( {c{m^2}} \right)\)