Bài 1.
a) \(9 - {x^2} + 6xy - 9{y^2} = 9 - \left( {{x^2} - 6xy + 9{y^2}} \right) = 9 - {\left( {x - 3y} \right)^2}\)
\( = \left( {3 - x + 3y} \right)\left( {3 + x - 3y} \right).\)
b)\({x^4} - 2{x^2} = {x^2}\left( {{x^2} - 2} \right) \)
\(= {x^2}\left[ {{x^2} - {{\left( {\sqrt 2 } \right)}^2}} \right] \)
\(= {x^2}\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right).\)
Bài 2.
\(\matrix{ - \hfill \cr {} \hfill \cr - \hfill \cr {} \hfill \cr - \hfill \cr {} \hfill \cr } \matrix{ {\,\,{x^3} + 3{x^2} + mx + 8} \hfill \cr {\underline {\,\,{x^3} + 4{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} } \hfill \cr {\,\,\,\,\,\,\,\, - {x^2} + mx + 8} \hfill \cr {\,\,\,\,\,\,\,\,\underline { - {x^2} - 4x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} } \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {m + 4} \right)x + 8} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline {\left( {m + 4} \right)x + 4m + 16\,\,} } \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 4m - 8} \hfill \cr} \matrix{ {x + 4} \hfill \cr {{x^2} - x + m + 4} \hfill \cr {} \hfill \cr {} \hfill \cr {} \hfill \cr {} \hfill \cr {} \hfill \cr } \)
P chia hết cho Q khi và chỉ khi \( - 4m - 8 = 0 \Leftrightarrow m = - 2.\)
Bài 3. Ta có: \(M = {{8x\left( {2x - 5y} \right)} \over {8x\left( {x - 3y} \right)}}\)
Vì \({x \over y} = 10\left( {y \ne 0} \right) \Rightarrow x = 10y\left( {y \ne 0} \right)\)
Vậy \(M = {{2x - 5y} \over {x - 3y}}.\) Thế \(x = 10y,\) ta có: \(M = {{20y - 5y} \over {10y - 3y}} = {{15} \over 7}.\)
Bài 4.
a) Điều kiện: \(x + 2 \ne 0\) và \(x - 2 \ne 0\) hay \(x \ne \pm 2\)
(Khi đó \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right) \ne 0).\)
b)\(A = {{ - \left( {5x - 6} \right)} \over {{x^2} - 4}} + {4 \over {x + 2}} + {2 \over {x - 2}} = {{ - 5x + 6 + 4\left( {x - 2} \right) + 2\left( {x + 2} \right)} \over {{x^2} - 4}}\)
\( = {{ - 5x + 6 + 4x - 8 + 2x + 4} \over {{x^2} - 4}} = {{x + 2} \over {\left( {x - 2} \right)\left( {x + 2} \right)}} = {1 \over {x - 2}}.\)
Bài 5.
Ta có: \(MN\parallel BC\left( {gt} \right)\)
\( \Rightarrow \widehat {MAB} = \widehat {ABC}\) (so le trong)
Tương tự: \(\widehat {NAC} = \widehat {ACB}\)
mà \(\widehat {ABC} = \widehat {ACB}\) (gt)
Do đó \(\widehat {MAB} = \widehat {NAC}\)
Dễ thấy \(\Delta MAB = \Delta NAC\left( {c.g.c} \right)\)
\( \Rightarrow \widehat {BMA} = \widehat {CNA}\)
Vậy MNCB là hình thang cân.
Nối B với N, C với M ta có HA và KI lần lượt là các đường trung bình của \(\Delta MBN\) và \(\Delta NCB\) nên \(HA\parallel BN\) và \(HA = {1 \over 2}BN.\)
Tương tự \(IK\parallel BN\) và \(IK = {1 \over 2}BN.\) Do đó \(HA\parallel IK\) nên AHIK là hình bình hành.
Chứng minh tương tự ta có \(AK\parallel MC\) và \(AK = {1 \over 2}MC\) mà BN = MC (tính chất hai đường chéo của hình thang cân) \( \Rightarrow HA = KA.\)
Do đó AHIK là hình thoi.
Bài 6.
a) Ta có MB = MC (gt)
MD = MA (tính chất đối xứng) nên ABCD là hình bình hành.
Lại có AB = AC (gt)
\( \Rightarrow \) Tứ giác ABDC là hình thoi.
b)E đối xứng với D qua K nên K là trung điểm của DE, M là trung điểm của AD nên MK là đường trung bình của \(\Delta AED.\)
\( \Rightarrow MK\parallel AE\) và \(MK = {1 \over 2}AE.\)
Lại có K là trung điểm của MC (gt) \( \Rightarrow MC\parallel AE\) và MC = AE.
Do đó tứ giác AMCE là hình bình hành.
\(\Delta ABC\) cân có trung tuyến AM nên AM đồng thời là đường cao hay \(AM \bot BC \Rightarrow \widehat {AMC} = {90^ \circ }\) .
Vậy AMCE là hình chữ nhật.
c) Ta có \(AE\parallel MC\) và AE = MC (cmt)
\( \Rightarrow AE\parallel MB\) và AE = MB
nên tứ giác AEMB là hình bình hành và I là giao điểm hai đường chéo nên I là trung điểm của BE.
d) Ta có AMCE là hình chữ nhật (cmt) nên ME đi qua trung điểm của AC. Lại có I, K theo thứ tự là trung điểm của AM (cmt) và MC (gt).
Do đó AK, CI, EM là ba đường trung tuyến của \(\Delta AMC\) nên chúng đồng quy.