Đề bài
Nếu \(x\) thỏa mãn điều kiện:
\(\sqrt {3 + \sqrt x } = 3\)
Thì \(x\) nhận giá trị là
(A) \(0\) ;
(B) \(6\) ;
(C) \(9\) ;
(D) \(36\) .
Hãy chọn câu trả lời đúng.
Đề bài
Biểu thức\(\sqrt {\dfrac{{3 - \sqrt 5 }}{{3 + \sqrt 5 }}} + \sqrt {\dfrac{{3 + \sqrt 5 }}{{3 - \sqrt 5 }}} \)
Có giá trị là
(A) \(3\) ;
(B) \(6\) ;
(C) \(\sqrt 5 \);
(D) \( - \sqrt 5 \).
Hãy chọn câu trả lời đúng.
Đề bài
Chứng minh các đẳng thức:
a) \(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6 \)
b) \(\sqrt {\dfrac{4}{{{{\left( {2 - \sqrt 5 } \right)}^2}}}} - \sqrt {\dfrac{4}{{{{\left( {2 + \sqrt 5 } \right)}^2}}}} = 8\)
Đề bài
Cho:
\(A = \dfrac{{\sqrt {4{x^2} - 4x + 1} }}{{4x - 2}}\)
Chứng minh: \(\left| A \right| = 0,5\) với \(x \ne 0,5.\)
Đề bài
Rút gọn các biểu thức:
a) \(\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt {4 - 2\sqrt 3 } ;\)
b) \(\sqrt {15 - 6\sqrt 6 } + \sqrt {33 - 12\sqrt 6 } ;\)
c) \(\left( {15\sqrt {200} - 3\sqrt {450} + 2\sqrt {50} } \right):\sqrt {10} .\)
Đề bài
a) Chứng minh:
\(x - 4\sqrt {x - 4} = {\left( {\sqrt {x - 4} - 2} \right)^2};\)
b) Tìm điều kiện xác định và rút gọn biểu thức:
\(\sqrt {x + 4\sqrt {x - 4} } + \sqrt {x - 4\sqrt {x - 4} } .\)
Đề bài
Tìm điều kiện xác định của các biểu thức sau:
\(A = \sqrt x + \sqrt {x + 1} \);
\(B = \sqrt {x + 4} + \sqrt {x - 1} .\)
a) Chứng minh rằng \(A \ge 1\) và \(B \ge \sqrt 5 \);
b) Tìm \(x\), biết:
\(\sqrt x + \sqrt {x + 1} = 1\);
\(\sqrt {x + 4} + \sqrt {x - 1} = 2\)
Đề bài
Chứng minh:
\(x - \sqrt x + 1 = {\left( {\sqrt x - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\) với \(x > 0\)
Từ đó, cho biết biểu thức \(\dfrac{1}{{x - \sqrt x + 1}}\) có giá trị lớn nhất là bao nhiêu ?
Giá trị đó đạt được khi \(x\) bằng bao nhiêu?
Đề bài
Tìm số \(x\) nguyên để biểu thức \({\dfrac{\sqrt x + 1}{\sqrt x - 3}}\) nhận giá trị nguyên.
Đề bài
Chứng minh các đẳng thức (với \(a, b\) không âm và \(a ≠ b\))
a) \(\dfrac{{\sqrt a + \sqrt b }}{{2\sqrt a - 2\sqrt b }} - \dfrac{{\sqrt a - \sqrt b }}{{2\sqrt a + 2\sqrt b }} - \dfrac{{2b}}{{b - a}} \)\(= \dfrac{{2\sqrt b }}{{\sqrt a - \sqrt b }}\)
b) \(\left(\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} - \sqrt {ab} \right)\left ({\dfrac{{\sqrt a + \sqrt b }}{{a - b}}}\right )^2 = 1\)
Đề bài
Cho biểu thức
\(A = \dfrac{{\left( {\sqrt a + \sqrt b } \right) - 4\sqrt {ab} }}{{\sqrt a - \sqrt b }} \)\(- \dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }}\)
a) Tìm điều kiện để A có nghĩa.
b) Khi A có nghĩa, chứng tỏ giá trị của A không phụ thuộc vào \(a\).
Đề bài
Cho biểu thức
\(B = (\dfrac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \dfrac{{\sqrt x }}{{x + \sqrt x + 1}})(\dfrac{{1 + \sqrt {{x^3}} }}{{1 + \sqrt x }} - \sqrt x )\) với \(x \ge 0\) và \(x \ne 1\) .
a) Rút gọn \(B\);
b) Tìm \(x\) để \(B = 3\).
Đề bài
Cho biểu thức:
\(C = (\dfrac{{\sqrt x }}{{3 + \sqrt x }} + \dfrac{{x + 9}}{{9 - x}})\)\(.(\dfrac{{3\sqrt x + 1}}{{x - 3\sqrt x }} - \dfrac{1}{{\sqrt x }})\) với \(x > 0\) và \(x \ne 9\)
a) Rút gọn \(C\)
b) Tìm \(x\) sao cho \(C < -1\).
Đề bài
Không dùng bảng số hoặc máy tính, hãy so sánh \(\dfrac{1}{{\sqrt 3 - \sqrt 2 }}\) với \(\sqrt 5 + 1\).