Ôn tập chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp

Bài Tập và lời giải

Bài 1.43 trang 38 SBT hình học 11
Trong mặt phẳng \(Oxy\) cho đường thẳng \(d:2x - y + 6 = 0\). Viết phương trình đường thẳng \(d'\) là ảnh của \(d\) qua phép đối xứng tâm \(I\left( { - 2;1} \right)\).

Xem lời giải

Bài 1.44 trang 38 SBT hình học 11
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} + 2x - 4y - 11 = 0\). Tìm phép tịnh tiến biến \(\left( C \right)\) thành \(\left( {C'} \right):{\left( {x - 10} \right)^2} + {\left( {y + 5} \right)^2} = 16\)

Xem lời giải

Bài 1.45 trang 38 SBT hình học 11
Trong mặt phẳng \(Oxy\) cho hai đường thẳng \(d:x - 5y + 7 = 0\) và \(d':5x - y - 13 = 0\). Tìm phép đối xứng qua trục biến \(d\) thành \(d'\).

Xem lời giải

Bài 1.46 trang 38 SBT hình học 11

Đề bài

Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\) có phương trình \(3x - y - 3 = 0\).Viết phương trình đường thẳng \({d_1}\) là ảnh của \(d\) qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm \(I\left( { - 1;2} \right)\) và phép quay tâm \(O\) góc quay \( - 90^\circ \).

Xem lời giải

Bài 1.47 trang 38 SBT hình học 11
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép đối xứng trục \(d:x = 1\).

Xem lời giải

Bài 1.48 trang 38 SBT hình học 11
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay \({Q_{\left( {0; - {{90}^0}} \right)}}\) với \(O\) là gốc tọa độ.

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”