Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình thang (đáy lớn \(AD\)). Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) và \(J\) lần lượt là trung điểm của \(SB\) và \(SC\).
a) Xác định giao điểm \(M\) của \( AI\) và \((SCD)\).
b) Chứng minh \(IJ\parallel \left( {SAD} \right)\).
c) Xác định thiết diện của hình chóp cắt bởi mp \((P)\) qua \(I\), song song với \(SD\) và \(AC\).
Đề bài
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C’ là trung điểm của SC và M là một điểm di động trên cạnh SA. Mặt phẳng (P) di động luôn đi qua C’M và song song với BC.
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành.
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào?
Đề bài
Cho hình chóp \(S.ABCD \) có đáy là hình thang \(ABCD \) (có đáy nhỏ \(BC\)). Gọi \(M, N\) lần lượt là trung điểm của \(AB \) và \(SD, O \) là giao điểm của \(AC \) và \(DM\).
a) Tìm giao điểm của \(MN\) và mặt phẳng \((SAC)\) .
b) Tìm thiết diện của hình chóp với mặt phẳng \((NBC)\). Thiết diện đó là hình gì?
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là tứ giác \(ABCD\). Gọi \(G_1\) và \(G_2\) lần lượt là trọng tâm của các tam giác \(SBC\) và \(SCD\)
Tìm giao tuyến của mặt phẳng \((AG_1G_2)\) với các mặt phẳng \((ABCD)\) và \((SCD)\).
Xác định thiết diện của hình chóp với mặt phẳng \((AG_1G_2)\).
Đề bài
Cho tứ diện \(ABCD\). Tìm vị trí điểm \(M\) trong không gian sao cho: \(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\) đạt giá trị cực tiểu.