Áp dụng các hằng đẳng thức đáng nhớ để tính:
a) \({(2 + i\sqrt 3 )^2}\) b) \({(1 + 2i)^3}\)
c) \({(3 - i\sqrt 2 )^2}\) d) \({(2 - i)^3}\)
Giải các phương trình sau trên tập số phức:
a) \((1 + 2i)x – (4 – 5i) = –7 + 3i\)
b) \((3 + 2i)x – 6ix = (1 – 2i)[x – (1 + 5i)]\)
Giải các phương trình sau trên tập số phức:
a) \(3{x^2} + (3 + 2i\sqrt 2 )x - \dfrac{{{{(1 + i)}^3}}}{{1 - i}} = i\sqrt 8 x\)
b) \({(1 - ix)^2} + (3 + 2i)x - 5 = 0\)
Tìm số phức \(z\), biết:
a) \(\overline z = {z^3}\) b) \(|z| + z = 3 + 4i\)
Tìm số phức \(z\) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}\left| {z - 2i} \right| = \left| z \right|\\\left| {z - i} \right| = \left| {z - 1} \right|\end{array} \right.\)
Chứng tỏ rằng \(\dfrac{{z - 1}}{{z + 1}}\) là số thực khi và chỉ khi \(z\) là một số thực khác \(– 1\).
Tìm phần ảo của số phức \(z\) biết \(\overline z = {(\sqrt 2 + i)^2}(1 - i\sqrt 2 )\)
(Đề thi đại học năm 2010, khối A)
Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn \(| z – (3 – 4i)| = 2\).
(Đề thi Đại học năm 2009, khối D)
Trên mặt phẳng \(Oxy\), tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(| z – i| = |(1 + i)z|\).
(Đề thi Đại học năm 2010, khối B)
Tìm số phức z thỏa mãn: \(|z - (2 + i)| = \sqrt {10} \) và \(z.\overline z = 25\)
(Đề thi đại học năm 2009, khối B)
Số nào sau đây là số thực?
A. \(\dfrac{{2 + i\sqrt 2 }}{{1 - i\sqrt 2 }} + \dfrac{{1 + i\sqrt 2 }}{{2 - i\sqrt 2 }}\)
B. \(\left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right)\)
C. \(\dfrac{{\left( {1 + i} \right)\left( {2 + i} \right)}}{{2 - i}} + \dfrac{{\left( {1 + i} \right)\left( {2 - i} \right)}}{{2 + i}}\)
D. \({\left( {2 + i\sqrt 3 } \right)^2} - {\left( {2 - i\sqrt 3 } \right)^2}\)
Số nào sau đây là số thuần ảo?
A. \(\dfrac{{{{\left( {1 + i} \right)}^5}}}{{{{\left( {1 - i} \right)}^3}}}\)
B. \({\left( {1 + i} \right)^5} + {\left( {1 - i} \right)^5}\)
C. \(\dfrac{{1 + i}}{{1 - i}} + \dfrac{{1 - i}}{{1 + i}}\)
D. \(\dfrac{{3 + 2i}}{{2 - i}} - \dfrac{{3 - 2i}}{{2 + i}}\)
Cho \(z\) là một số phức tùy ý. Mệnh đề nào sau đây sai?
A. \(z \in \mathbb{R} \Leftrightarrow z = \overline z \)
B. \(z\) thuần ảo \( \Leftrightarrow z + \overline z = 0\)
C. \(\dfrac{z}{{\overline z }} - \dfrac{{\overline z }}{z} \in \mathbb{R}\left( {z \ne 0} \right)\)
D. \({z^3} + {\left( {\overline z } \right)^3} \in \mathbb{R}\)
Cho \({z_1},{z_2} \in \mathbb{C}\) là hai nghiệm của một phương trình bậc hai với hệ số thực. khẳng định nào sau đây là sai?
A. \({z_1} + {z_2} \in \mathbb{R}\) B. \({z_1}.{z_2} \in \mathbb{R}\)
C. \({z_1} - {z_2} \in \mathbb{R}\) D. \(z_1^2 + z_2^2 \in \mathbb{R}\)
Cho \(k,n \in \mathbb{N}\), biết \({\left( {1 + i} \right)^n} \in \mathbb{R}\). Kết luận nào sau đây là đúng?
A. \(n = 4k + 1\) B. \(n = 4k + 2\)
C. \(n = 4k + 3\) D. \(n = 4k\)