Bài 1. Cho hai đường tròn (O ; R), (O’ ; R’) và một đường thẳng d
a. Tìm hai điểm M, N lần lượt nằm trên hai đường tròn đó sao cho d là đường trung trực của đoạn thẳng MN
b. Xác định điểm I trên d sao cho tiếp tuyến IT của (O ; R) và tiếp tuyến IT’ của (O’ ; R’) hợp thành các góc mà d là một trong các đường phân giác của các góc đó
Bài 2. Chứng minh rằng nếu một hình nào đó có hai trục đối xứng vuông góc với nhau thì hình đó có tâm đối xứng
Bài 3. Cho đường thẳng d đi qua hai điểm phân biệt P, Q và hai điểm A, B nằm về một phía đối với d. Hãy xác định trên d hai điểm M, N sao cho \(\overrightarrow {MN} = \overrightarrow {PQ} \) và AM + BN bé nhất
Bài 4. Cho vecto \(\overrightarrow u \) và điểm O. Với điểm M bất kì, ta gọi M1là điểm đối xứng với M qua O và M’ là điểm sao cho \(\overrightarrow {{M_1}M'} = \overrightarrow u \). Gọi F là phép biến hình biến M thành M’
a. F là phép hợp thành của hai phép nào ? F có phải là phép dời hình hay không ?
b. Chứng tỏ rằng F là một phép đối xứng tâm
Bài 5. Cho tam giác ABC nội tiếp trong đường tròn (O) và một điểm M thay đổi trên (O). Gọi M1 là điểm đối xứng với M qua A, M2 là điểm đối xứng với M1 qua B, M3 là điểm đối xứng với M2 qua C
a. Chứng tỏ rằng phép biến hình F biến điểm M thành M3 là một phép đối xứng tâm
b. Tìm quỹ tích điểm M3
Bài 6. Gọi F là phép biến hình có tính chất sau đây: Với mọi cặp điểm M, N và ảnh M’, N’ của chúng, ta luôn có \(\overrightarrow {M'N'} = k\overrightarrow {MN} \) , trong đó k là một số không đổi khác 0. Hãy chứng minh rằng F là phép tịnh tiến hoặc phép vị tự
Bài 7.
a. Cho tam giác ABC và hình vuông MNPQ như hình 27. Gọi V là phép vị tự tâm A tỉ số \(k = {{AB} \over {AM}}\) . Hãy dựng ảnh của hình vuông MNPQ qua phép vị tự V
b. Từ bài toán ở câu a) hãy suy ra cách giải bài toán sau: Cho tamn giác nhọn ABC, hãy dựng hình vuông MNPQ sao cho hai đỉnh P, Q nằm trên cạnh BC và hai đỉnh M, N lần lượt nằm trên hai cạnh AB và AC
Bài 8. Cho đường tròn (O) có đường kính AB. Gọi C là điểm đối xứng với A và B và PQ là đường kính thay đổi của (O) khác đường kính AB. Đường thẳng CQ cắt PA và PB lần lượt tại M và N
a. Chứng minh rằng Q là trung điểm của CM, N là trung điểm của CQ.
b. Tìm quỹ tích các điểm M và N khi đường kính PQ thay đổi
Bài 9. Cho đường tròn (O ; R) và điểm A cố định Một dãy cung BC thay đổi của (O ; R) có độ dài không đổi BC = m. Tìm quỹ tích các điểm G sao cho \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Các câu hỏi trách nhiệm