Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.
a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\).
b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\).
c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M, N, P\) theo thứ tự là trung điểm của các đoạn thẳng \(SA, BC, CD\). Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng \((MNP)\).
Gọi \(O\) là giao diểm hai đường chéo của hình bình hành \(ABCD\), hãy tìm giao điểm của đường thẳng \(SO\) với \(mp (MNP)\).
Cho hình chóp đỉnh \(S\) có đáy là hình thang \(ABCD\) với \(AB\) là đáy lớn. Gọi \(M, N\) theo thứ tự là trung điểm của các cạnh \(SB, SC\)
a) Tìm giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\)
b) Tìm giao điểm của đường thẳng \(SD\) với mặt phẳng \((AMN)\)
c) Tìm thiết dện của hình chóp \(S.ABCD\) cắt bởi mặt phẳng \((AMN)\)
Cho hình bình hành \(ABCD\). Qua \(A, B, C, D\) lần lượt vẽ bốn nửa đường thẳng \(Ax, By, Cz, Dt\) ở cùng phía đối với mặt phẳng \((ABCD)\), song song với nhau và không nằm trong mặt phẳng \((ABCD)\). Một mặt phẳng \((β)\) lần lượt cắt \(Ax, By, Cz\) và \(Dt\) tại \(A', B', C'\) và \(D'\).
a) Chứng minh mặt phẳng \((Ax, By)\) song song với mặt phẳng \(( Cz, Dt)\)
b) Gọi \(I = AC ∩ BD, J = A'C' ∩ B'D'\). Chứng minh \(IJ\) song song với \(AA'\)
c) Cho \(AA' = a, BB' = b, CC' = c\). Hãy tính \(DD'\).
Tìm mệnh đề sai trong các mệnh đề sau đây:
(A) Nếu hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.
(B) Nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau.
(C) Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau.
(D) Nếu một đường thẳng cắt một trong hai mặt phẳng song song với nhau thì sẽ cắt mặt phẳng còn lại.
Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó
(A) Đồng quy.
(B) Tạo thành tam giác.
(C) Trùng nhau.
(D) Cùng song song với một mặt phẳng.
Tìm mệnh đề đúng trong các mệnh đề trên.
Cho tứ diện \(ABCD\). Gọi \(I, J\) và \(K\) lần lượt là trung điểm của \(AC, BC\) và \(BD\) (h.2.75). Giao tuyến của hai mặt phẳng \((ABD)\) và \((IJK)\) là
(A) \(KD\);
(B) \(KI\);
(C) Đường thẳng qua \(K\) và song song với \(AB\);
(D) Không có.
Tìm mệnh đề đúng trong các mệnh đề sau:
(A) Nếu hai mặt phẳng \((α), (β)\) song song với nhau thì mọi đường thẳng nằm trong \((α)\) đều song song với \((β)\).
(B) Nếu hai mặt phẳng \((α), (β)\) song song với nhau thì mọi đường thẳng nằm trong \((α)\) đều song song với mọi đường thẳng nằm trong \((β)\).
(C) Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai măt phẳng phân biệt \((α), (β)\) thì \((α), (β)\) song song với nhau
(D) Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.
Cho tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(AC\) (h.2.76), \(E\) là điểm trên cạnh \(CD\) với \(ED = 3EC\). Thiết diện tạo bởi mặt phẳng \((MNE)\) và tứ diện \(ABCD\) là:
(A) Tam giác \(MNE\);
(B) Tứ giác \(MNEF\) với \(F\) là điểm bất kì trên cạnh \(BD\);
(C) Hình bình hành \(MNEF\) với \(F\) là điểm trên cạnh \(BD\) mà \(EF // BC\);
(D) Hình thang \(MNEF\) với \(F\) là điểm trên cạnh \(BD\) mà \(EF // BC\).
Cho hình lăng trụ tam giác \(ABC.A'B'C'\), Gọi \(I, J\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\) (h.2.77). Thiết diện tạo bởi mặt phẳng \((AIJ)\) với hình lăng trụ đã cho là
(A) Tam giác cân;
(B) Tam giác vuông;
(C) Hình thang;
(D) Hình bình hành.
Cho tứ diện \(SABC\) cạnh bằng \(a\). Gọi \(I\) là trung điểm của đoạn \(AB\), \(M\) là điểm di động trên đoạn \(AI\). Qua \(M\) vẽ mặt phẳng \((α)\) song song với \((SIC)\).
Thiết diện tạo bởi \((α)\) và tứ diện \(SABC\) là:
(A) Tam giác cân tại \(M\);
(B) Tam giác đều;
(C) Hình bình hành;
(D) Hình thoi.
Với giả thiết của bài tập 7, chu vi của thiết diện tính theo \(AM = x\) là:
(A) \(x( 1 + \sqrt3)\); (B) \(2x ( 1 + \sqrt3)\);
(C) \(3x ( 1 + \sqrt 3)\); (D) Không tính được.
Cho hình bình hành \(ABCD\). Gọi \(Bx, Cy, Dz\) là các nửa đường thẳng song song với nhau lần lượt đi qua \(B, C, D\) và nằm về một phía của mặt phẳng \((ABCD)\) đồng thời không nằm trong mặt phẳng \((ABCD)\). Một mặt phẳng đi qua \(A\) và cắt \(Bx, Cy, Dz\) lần lượt tại \(B', C', D'\) với \(BB'=2, DD'=4\). Khi đó \(CC'\) bằng:
(A) 3 (B) 4
(C) 5 (D) 6
Tìm mệnh đề đúng trong các mệnh đề sau:
(A) Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau;
(B) Hai đường thẳng phân biệt không cắt nhau thì chéo nhau;
(C) Hai đường thẳng phân biệt không song song thì chéo nhau;
(D) Hai đường thẳng phân biệt lần lượt thuộc hai mặt phẳng khác nhau thì chéo nhau.
Cho hình vuông \(ABCD\) và tam giác đều \(SAB\) nằm trong hai mặt phẳng khác nhau. Gọi \(M\) là điểm di động trên đoạn \(AB\). Qua \(M\) vẽ mặt phẳng \((\alpha)\) song song với \((SBC)\)
Thiết diện tạo bởi \((\alpha)\) và hình chóp \(S.ABCD\) là hình gì?
(A) Tam giác (B) Hình bình hành
(C) Hình thang (D) Hình vuông
Với giả thiết của bài tập 11, gọi \(N, P, Q\) lần lượt là giao của mặt phẳng \((\alpha)\) với các đường thẳng \(CD, DS, SA\). Tập hợp các giao điểm \(I\) của hai đường thẳng \(MQ\) và \(NP\) là:
(A) Đường thẳng
(B) Nửa đường thẳng
(C) Đoạn thẳng song song với \(AB\)
(D) Tập hợp rỗng