Cho ba điểm \(A, B, C\) cùng thuộc một mặt cầu và cho biết \(\widehat {ACB} = 90^0\). Trong các khẳng định sau khẳng định nào đúng?
a) Đường tròn qua ba điểm \(A, B, C\) nằm trên mặt cầu.
b) \(AB\) là một đường kính của mặt cầu đã cho.
c) \(AB\) không phải là đường kính của mặt cầu.
d) \(AB\) là đường kính của đường tròn giao tuyến tạo bởi mặt cầu và mặt phẳng \((ABC)\)
Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \((ABC)\) và cạnh \(BD\) vuông góc với cạnh \(BC\). Biết \(AB = AD = a\), tính diện tích xung quanh và thể tích của khối nón được tạo thành khi quay đường gấp khúc \(BDA\) quanh cạnh \(AB\).
Chứng minh rằng hình chóp có tất cả các cạnh bên bằng nhau nội tiếp được trong một mặt cầu.
Hình chóp \(S.ABC\) có một mặt cầu tiếp xúc với các cạnh \(SA, SB, SC\) và tiếp xúc với ba cạnh \(AB, BC, CA\) tại trung điểm của mỗi cạnh. Chứng minh rằng hình chóp đó là hình chóp tam giác đều.
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(H\) là hình chiếu vuông góc của đỉnh \(A\) xuống mặt phẳng \((BCD)\).
a) Chứng minh \(H\) là tâm đường tròn ngoại tiếp tam giác \(BCD\). Tính độ dài đoạn \(AH\).
b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác \(BCD\) và chiều cao \(AH\).
Cho hình vuông \(ABCD\) cạnh \(a\). Từ tâm \(O\) của hình vuông dựng đường thẳng \(\Delta\) vuông góc với mặt phẳng \((ABCD)\). Trên \(\Delta\) lấy điểm \(S\) sao cho \(OS ={a \over 2}\). Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\). Tính diện tích của mặt cầu và thể tích của khối cầu được tạo nên bởi mặt cầu đó.
Cho hình trụ có bán kính đáy \(r\), trục \(OO' = 2r\) và mặt cầu đường kính \(OO'\).
a) Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ đó.
b) Hãy so sánh thể tích khối trụ và thể tích khối cầu được tạo nên bởi hình trụ và mặt cầu đã cho.
Cho hình lập phương \(\displaystyle ABCD.A'B'C'D'\) có cạnh bằng \(\displaystyle a\). Gọi \(\displaystyle S\) là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông \(\displaystyle ABCD\) và \(\displaystyle A'B'C'D'\). Diện tích \(\displaystyle S\) là:
(A) \(\displaystyle πa^2\); (B) \(\displaystyle πa^2\sqrt 2 \) ;
(C) \(\displaystyle πa^2\sqrt 3 \); (D) \(\displaystyle {{\pi {{\rm{a}}^2}\sqrt 2 } \over 2}\).
Gọi \(S\) là diện tích xung quanh của hình nón tròn xoay được sinh ra bởi đoạn thẳng \(AC'\) của hình lập phương \(ABCD.A'B'C'D'\) có cạnh \(b\) khi quay xung quanh trục \(AA'\). Diện tích \(S\) là:
(A) \(πb^2\); (B) \(πb^2\sqrt 2 \) ;
(C) \(πb^2\sqrt 3 \) ; (D) \(πb^2\sqrt 6 \).
Hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(A\), có \(SA\) vuông góc với mặt phẳng \((ABC)\) và có \(SA = a, AB = b, AC = c\). Mặt cầu đi qua các đỉnh \(A, B, C, S\) có bán kính \(r\) bằng:
(A) \({{2(a + b + c)} \over 3}\) ; (B) 2\(\sqrt {{a^2} + {b^2} + {c^2}} \)
(C) \({1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \) ; (D) \(\sqrt {{a^2} + {b^2} + {c^2}} \)
Cho hai điểm cố định \(A, B\) và một điểm \(M\) di động trong không gian nhưng luôn thoả mãn điều kiện \(\widehat {MAB} = α\) với \(0^0<α<90^0\). Khi đó điểm \(M\) thuộc mặt nào trong các mặt sau:
(A) Mặt nón; (B) Mặt trụ;
(C) Mặt cầu; (D) Mặt phẳng.
Số mặt cầu chứa một đường tròn cho trước là:
(A) 0 ; (B) 1 ;
(C) 2 ; (D) vô số.
Trong các đa diện sau đây, đa diện nào không luôn luôn nội tiếp được trong mặt cầu:
(A) Hình chóp tam giác (tứ diện)
(B) Hình chóp ngũ giác đều;
(C) Hình chóp tứ giác;
(D) Hình hộp chữ nhật.
Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \((ABC)\) và cạnh \(BD\) vuông góc với cạnh \(BC\). Khi quay các cạnh tứ diện đó xung quanh trục là cạnh \(AB\), có bao nhiêu hình nón được tạo thành?
(A) 1; (B) 2;
(C) 3; (D) 4.
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Một hình nón có đỉnh là tâm của hình vuông \(ABCD\) và có đường tròn đáy ngoại tiếp hình vuông \(A'B'C'D'\). Diện tích xung quanh của hình nón đó là:
(A) \({{\pi {a^2}\sqrt 3 } \over 3}\) (B) \({{\pi {a^2}\sqrt 2 } \over 2}\)
(C) \({{\pi {a^2}\sqrt 3 } \over 2}\) (D) \({{\pi {a^2}\sqrt 6 } \over 2}\)
Cho tam giác đều \(ABC\) cạnh \(a\) quay xung quanh đường cao \(AH\) tạo nên một hình nón. Diện tích xung quanh của hình nón đó là:
(A) \(πa^2\) ; (B) \(2πa^2\) ;
(C) \({1 \over 2}πa^2\) ; (D) \({3 \over 4}πa^2\).
Trong các mệnh đề sau đây, mệnh đề nào sai?
(A) Mặt trụ và mặt nón có chứa các đường thẳng.
(B) Mọi hình chóp luôn nội tiếp trong mặt cầu.
(C) Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau.
(D) Luôn có hai đường tròn có bán kính khác nhau cùng nằm trên một mặt nón.
Cho hình trụ có bán kính đáy bằng \(\displaystyle r\). Gọi \(\displaystyle O, O'\) là tâm của hai đáy với \(\displaystyle OO' = 2r\). Một mặt cầu \(\displaystyle (S)\) tiếp xúc với hai đáy của hình trụ tại \(\displaystyle O\) và \(\displaystyle O'\). Trong các mệnh đề dưới đây, mệnh đề nào sai?
(A) Diện tích mặt cầu bằng diện tích xung quanh của hình trụ.
(B) Diện tích mặt cầu bằng \(\displaystyle {2 \over 3}\) diện tích toàn phần của hình trụ.
(C) Thể tích khối cầu bằng \(\displaystyle {3 \over 4}\) thể tích khối trụ.
(D) Thể tích khối cầu bằng \(\displaystyle {2 \over 3}\) thể tích khối trụ.
Một hình hộp chữ nhật nội tiếp mặt cầu và có ba kích thước là \(\displaystyle a, b, c\). Khi đó bán kính \(\displaystyle r\) của mặt cầu bằng:
(A) \(\displaystyle {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \);
(B) \(\displaystyle \sqrt {{a^2} + {b^2} + {c^2}} \);
(C) \(\displaystyle \sqrt {2({a^2} + {b^2} + {c^2})} \);
(D) \(\displaystyle {{\sqrt {{a^2} + {b^2} + {c^2}} } \over 3}\).
Một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt của một hình lập phương cạnh \(a\). Thể tích của khối trụ đó là:
(A) \({1 \over 2}a^3π\) ; (B) \({1 \over 4}a^3π\) ;
(C) \({1 \over 3}a^3π\) ; (D) \(a^3π\).
Một hình tứ diện đều cạnh \(a\) có một đỉnh trùng với đỉnh của hình nón, ba đỉnh còn lại nằm trên đường tròn đáy của hình nón. Khi đó diện tích xung quanh của hình nón là:
(A) \({1 \over 2}\pi {a^2}\sqrt 3 \) ; (B) \({1 \over 3}\pi {a^2}\sqrt 2 \) ;
(C) \({1 \over 3}\pi {a^2}\sqrt 3 \) ; (D) \(\pi {a^2}\sqrt 3 \) .
Trong các mệnh đề sau đây mệnh đề nào sai?
(A) Có một mặt cầu ngoại tiếp một hình tứ diện bất kì.
(B) Có một mặt cầu ngoại tiếp một hình chóp đều.
(C) Có một mặt cầu ngoại tiếp một hình hộp.
(D) Có một mặt cầu ngoại tiếp một hình hộp chữ nhật.
Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính quả bóng bàn. Gọi S1 là tổng diện tích của ba quả bóng bàn, S2 là diện tích xung quanh của hình trụ. Tỉ số \(\displaystyle{{{S_1}} \over {{S_2}}}\) bằng:
(A) 1 ; (B) 2 ;
(C) 1,5 ; (D) 1,2 .
Người ta xếp \(7\) viên bi có cùng bán kính r vào một cái lọ hình trụ sao cho tất cả các viên bi đều tiếp xúc với đáy, viên bi nằm chính giữa tiếp xúc với \(6\) viên bi xung quanh và mỗi viên bi xung quanh đều tiếp xúc với các đường sinh của lọ hình trụ. Khi đó diện tích đáy của cái lọ hình trụ là:
(A) \(16πr^2\) ; (B) \(18πr^2\) ;
(C) \(9πr^2\) ; (D) \(36πr^2\) .
Cho ba điểm \(A, C, B\) nằm trên một mặt cầu, biết rằng góc \(\widehat {ACB}= 90^0\). Trong các khẳng định sau, khẳng định nào là đúng?
(A) \(AB\) là một đường kính của mặt cầu.
(B) Luôn có một đường tròn nằm trên mặt cầu ngoại tiếp tam giác \(ABC\).
(C) Tam giác \(ABC\) vuông cân tại \(C\).
(D) Mặt phẳng \((ABC)\) cắt mặt cầu theo giao tuyến là một đường tròn lớn.