Xác định tỉ số của hai đoạn thẳng \(AB\) và \(DC\) trong các trường hợp sau:
a) \(AB = 5cm, CD = 15 cm;\)
b) \(AB = 45 dm, CD = 150 cm;\)
c) \(AB = 5CD.\)
Cho tam giác \(ABC (AB < AC)\). Vẽ đường cao \(AH\), đường phân giác \(AD\), đường trung tuyến \(AM\). Có nhận xét gì về vị trí của ba điểm \(H, D, M\).
Cho tam giác cân \(ABC (AB = AC)\), vẽ các đường cao \(BH, CK\) (H.66).
a) Chứng minh \(BK = CH\).
b) Chứng minh \(KH//BC\).
c) Cho biết \(BC = a, AB = AC = b\). Tính độ dài đoạn thẳng \(HK\).
Hướng dẫn câu c):
- Vẽ thêm đường cao \(AI\), xét hai tam giác đồng dạng \(IAC\) và \(HBC\) rồi tính \(CH\).
- Tiếp theo, xét hai tam giác đồng dạng \(AKH\) và \(ABC\) rồi tính \(HK\).
Hình thang \(ABCD \,(AB//CD)\) có \(AC\) và \(BD\) cắt nhau tại \(O, AD\) và \(BC\) cắt nhau tại \(K\). Chứng minh rằng \(OK\) đi qua trung điểm của các cạnh \(AB\) và \(CD\).
Cho tam giác vuông \(ABC\), và đường phân giác \(BD\) (\(D\) thuộc cạnh \(AC\)).
a) Tính tỉ số \(\dfrac{{A{\rm{D}}}}{{C{\rm{D}}}}\) .
b) Cho biết độ dài \(AB = 12,5 cm\). Hãy tính chu vi và diện tích của tam giác \(ABC\).
Tứ giác \(ABCD\) có \(AB = 4cm, BC = 20 cm\), \(CD = 25 cm, DA = 8cm\), đường chéo \(BD = 10cm\).
a) Nêu cách vẽ tứ giác \(ABCD\) có kích thước đã cho ở trên.
b) Các tam giác \(ABD\) và \(BDC\) có đồng dạng với nhau không? Vì sao?
c) Chứng minh rằng \(AB // CD\).