Nhắc lại định nghĩa vecto trong không gian.
Cho hình lăng trụ tam giác \(ABC.A’B’C’\). Hãy kể tên những vecto bằng vecto \(\overrightarrow {AA'} \) có điểm đầu và điểm cuối là đỉnh của hình lăng trụ.
Trong không gian cho ba vecto \(\overrightarrow a ,\overrightarrow b ;\overrightarrow c \) đều khác vecto \(\overrightarrow 0 \) . Khi nào ba vecto đó đồng phẳng?
Trong không gian, hai đường thẳng không cắt nhau có thể vuông góc với nhau không? Giả sử hai đường thẳng \(a\) và \(b\) lần lượt có vecto chỉ phương là \(\overrightarrow u \) và \(\overrightarrow v \) . Khi nào ta có thể kết luận \(a\) và \(b\) vuông góc với nhau?
Muốn chứng minh đường thẳng \(a\) vuông góc với mặt phẳng \((α)\) thì người ta cần chứng minh \(a\) vuông góc với mọi đường thẳng của mặt phẳng \(α\) hay không?
Nhắc lại định nghĩa:
a) Góc giữa đường thẳng và mặt phẳng.
b) Góc giữa hai mặt phẳng.
Muốn chứng minh mặt phẳng \((α)\) vuông góc với mặt phẳng \((β)\) người ta thường làm như thế nào?
Hãy nêu cách tính khoảng cách:
a) Từ một điểm đến một đường thẳng
b) Từ đường thẳng \(a\) đến mặt phẳng \((α)\) song song với \(a\)
c) Giữa hai mặt phẳng song song.
Cho \(a\) và \(b\) là hai đường thẳng chéo nhau. Có thể tính khoảng cách giữa hai đường thẳng chéo nhau bằng cách nào?
Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác \(ABC\) là đường vuông góc với mặt phẳng \((ABC)\) và đi qua tâm đường tròn ngoại tiếp tam giác \(ABC\).
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song
c) Mặt phẳng \((α)\) vuông góc với đường thẳng \(b\) mà \(b\) vuông góc với đường thẳng \(a\), thì \(a\) song song với \((α)\)
d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.
e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.
Trong các khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh \(SA\) bằng \(a\) và vuông góc với mặt phẳng \((ABCD)\).
a) Chứng minh rằng bốn mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng \((α)\) đi qua \(A\) và vuông góc với cạnh \(SC\) lần lượt cắt \(SB, SC\) và \(SD\) tại \(B’, C’\) và \(D’\). Chứng minh \(B’D’\) song song với \(BD\) và \(AB’\) vuông góc với \(SB\).
Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) và có góc \(\widehat{ BAD} = 60^0\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Đường thẳng SO vuông góc với mặt phẳng (ABCD) và \(SO = {{3a} \over 4}\) . Gọi \(E\) là trung điểm của đoạn \(BC\) và \(F\) là trung điểm của đoạn \(BE\).
a) Chứng minh mặt phẳng \( (SOF)\) vuông góc với mặt phẳng \((SBC)\)
b) Tính các khoảng cách từ \(O\) và \(A\) đến mặt phẳng \((SBC)\)
Tứ diện \(ABCD\) có hai mặt \(ABC\) và \(ADC\) nằm trong hai mặt phẳng vuông góc với nhau. Tam giác \(ABC\) vuông tại \(A\) có \(AB = a, AC = b\). Tam giác \(ADC\) vuông tại \(D\) có \(CD = a\).
a) Chứng minh các tam giác \(BAD\) và \(BDC\) đều là tam giác vuông
b) Gọi \(I\) và \(K\) lần lượt là trung điểm của \(AD\) và \(BC\). Chứng minh \(IK\) là đoạn vuông góc chung của hai đường thẳng \(AD\) và \(BC\).
Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a\).
a) Chứng minh \(BC’\) vuông góc với mặt phẳng \((A’B’CD)\)
b) Xác định và tính độ dài đoạn vuông góc chung của \(AB’\) và \(BC’\)
Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\), góc \(\widehat {BAD} = 60^0\) và \(SA = SB = SD = {{a\sqrt 3 } \over 2}\)
a) Tính khoảng cách từ \(S\) đến mặt phẳng \((ABCD)\) và độ dài cạnh \(SC\)
b) Chứng minh mặt phẳng \((SAC)\) vuông góc với mặt phẳng \((ABCD)\)
c) Chứng minh \(SB\) vuông góc với \(BC\)
d) Gọi \(\varphi\) là góc giữa hai mặt phẳng \((SBD)\) và \((ABCD)\). Tính \(\tan\varphi\)
Trong các mệnh đề sau đây, mệnh đề nào là đúng?
(A) Từ \(\overrightarrow {AB} = 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {BA} = - 3\overrightarrow {CA} \)
(B) Từ \(\overrightarrow {AB} = - 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {CB} = 2\overrightarrow {AC} \)
(C) Vì \(\overrightarrow {AB} = - 2\overrightarrow {AC} + 5\overrightarrow {AD} \) nên bốn điểm \(A, B, C\) và \(D\) cùng thuộc một mặt phẳng
(D) Nếu \(\overrightarrow {AB} = - {1 \over 2}\overrightarrow {BC} \) thì \(B\) là trung điểm của đoạn \(AC\)
Tìm mệnh đề sai trong các mệnh đề sau đây:
A. Vì \(\overrightarrow {NM} + \overrightarrow {NP} = \overrightarrow 0 \) nên \(N\) là trung điểm của đoạn \(MP\)
B. Vì \(I\) là trung điểm của đoạn \(AB\) nên từ một điểm \(O\) bất kì ta có: \(\overrightarrow {OI} = {1 \over 2}(\overrightarrow {OA} + \overrightarrow {OB} )\)
C. Từ hệ thức \(\overrightarrow {AB} = 2\overrightarrow {AC} - 8\overrightarrow {AD} \) ta suy ra ba vecto \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) đồng phẳng
D. Vì \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = 0\) nên bốn điểm \(A, B, C, D\) cùng thuộc một mặt phẳng.
Trong các mệnh đề sau, kết quả nào đúng?
Cho hình lập phương \(ABCD.EFGH\) có cạnh bằng \(a\) và \(O\) là trung điểm của \(AG\), ta có \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng :
A. \(a^2\) B. \( a^2\sqrt 2\)
C. \(a^2\sqrt3\) D. \({{{a^2}\sqrt 2 } \over 2}\)
Trong các mệnh đề sau đây, mệnh đề nào đúng?
A. Nếu đường thẳng \(a\) vuông góc với đường thẳng \(b\) và đường thẳng \(b\) vuông góc với đường thẳng \(c\) thì \(a\) vuông góc với \(c\)
B. Nếu đường thẳng \(a\) vuông góc với đường thẳng \(b\) và đường thẳng \(b\) song song với đường thẳng \(c\) thì \(a\) vuông góc với \(c\).
C. Cho ba đường thẳng \(a, b\) và \(c\) vuông góc với nhau từng đôi một. Nếu có một đường thẳng \(d\) vuông góc với \(a\) thì \(d\) song song với \(b\) hoặc \(c\).
D. Cho hai đường thẳng \(a\) và \(b\) song song với nhau. Nếu đường thẳng \(c\) vuông góc với \(a\) thì \(c\) vuông góc với mọi đường thẳng nằm trong mặt phẳng \((a, b)\)
Trong các mệnh đề sau, hãy tìm mệnh đề đúng.
(A) Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau.
(B) Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.
(C) Hai mặt phẳng \((α)\) và \((β)\) vuông góc với nhau và cắt nhau theo giao tuyến \(d\). Với mỗi điểm \(A\) thuộc \((α)\) và mỗi điểm \(B\) thuộc \((β)\) thì ta có đường thẳng \(AB\) vuông góc với đường thẳng \(d\).
(D)Nếu hai mặt phẳng \((α)\) và \((β)\) đều vuông góc với mặt phẳng \(\left( \gamma \right)\) thì giao tuyến \(d\) của \((α)\) và \((β)\) nếu sẽ vuông góc với \(\left( \gamma \right)\).
Tìm mệnh đề sai trong các mệnh đề sau đây:
(A) Cho hai đường thẳng \(a\) và \(b\) trong không gian có các vecto chỉ phương lần lượt là \(\overrightarrow u ,\overrightarrow v \) . Điều kiện cần và đủ để \(a\) và \(b\) chéo nhau là \(a\) và \(b\) không có điểm chung và hai vecto \(\overrightarrow u ,\overrightarrow v \) không cùng phương.
(B) Gọi \(a\) và \(b\) là hai đường thẳng chéo nhau và vuông góc với nhau. Đường thẳng vuông góc chung của \(a\) và \(b\) nằm trong mặt phẳng chứa đường này và vuông góc với đường kia.
(C) Không thể có một hình chóp tứ giác \(S.ABCD\) này có hai mặt bên \((SAB)\) và \((SCD)\) cùng vuông góc với mặt phẳng đáy.
(D) Gọi \({\overrightarrow u ,\overrightarrow v } \) là cặp vecto chỉ phương của hai đường thẳng cắt nhau nằm trong mặt phẳng \((α)\) và là \(\overrightarrow n \) vecto chỉ phương của đường thẳng \(Δ\). Điều kiện cần và đủ để \(Δ ⊥ (α)\) là: \(\left\{ \matrix{\overrightarrow {n.} \overrightarrow u = 0 \hfill \cr \overrightarrow {n.} \overrightarrow v = 0 \hfill \cr} \right.\)
Trong các mệnh đề sau đây, mệnh đề nào đúng?
A. Một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng đó cùng nằm trong một mặt phẳng.
B. Một đường thẳng cắt hai đường thẳng cắt nhau cho trước thì cả ba đường thẳng đó cùng nằm trong một mặt phẳng.
C. Ba đường thẳng cắt nhau từng đôi một thì đồng phẳng
D. Ba đường thẳng cắt nhau từng đôi một và không đồng phẳng thì đồng quy.
Trong các mệnh đề sau đây, mệnh đề nào đúng?
(A) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
(B) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì cắt nhau.
(C) Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
(D) Hai đường thẳng không cắt nhau và không song song thì chéo nhau.
Trong các mệnh đề sau, mệnh đề nào đúng?
(A) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chéo nhau.
(B) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì cắt nhau
(C) Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì vuông góc với nhau.
(D) Một mặt phẳng \((α)\) và một đường thẳng \(a\) không thuộc \((α)\) cùng vuông góc với đường thẳng \(b\) thì \((α)\) song song với \(a\).
Tìm mệnh đề đúng trong các mệnh đề sau đây:
(A) Đoạn vuông góc chung của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì lần lượt nằm trên hai đường thẳng ấy và ngược lại,
(B) Qua một điểm cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
(C) Qua một điểm cho trước có duy nhất một đường thẳng vuông góc với một đường thẳng cho trước.
(D) Cho ba đường thẳng \(a, b\) và \(c\) chéo nhau từng đôi một. Khi đó ba đường thẳng này sẽ nằm trong ba mặt phẳng song song với nhau từng đôi một.
Khoảng cách giữa hai cạnh đối của một tứ diện đều cạnh \(a\) là bằng:
(A) \({{3a} \over 2}\) (B) \({{a\sqrt 2 } \over 2}\)
(C) \({{a\sqrt 3 } \over 2}\) (D) \(a\sqrt2\)