Xét các mệnh đề sau:
I. \(\sqrt {\left( { - 4} \right).\left( { - 25} \right)} = \sqrt { - 4} .\sqrt { - 25}\) ;
II. \(\sqrt {\left( { - 4} \right).\left( { - 25} \right)} = \sqrt {100}\)
III. \(\sqrt {100} = 10\)
IV. \(\sqrt {100} = \pm 10\)
Những mệnh đề nào là sai?
Hãy chọn câu trả lời đúng trong các câu A, B, C, D dưới đây:
A. Chỉ có mệnh đề I sai;
B. Chỉ có mệnh đề II sai;
C. Các mệnh đề I và IV sai;
D. Không có mệnh đề nào sai.
Rút gọn các biểu thức:
\(M = \sqrt {3 - 2\sqrt 2 } - \sqrt {6 + 4\sqrt 2 } \)
\(N = \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \)
Giá trị của biểu thức \({{2\left( {\sqrt 2 + \sqrt 6 } \right)} \over {3\sqrt {2 + \sqrt 3 }}}\) bằng
(A) \(\displaystyle {{2\sqrt 2 } \over 3}\) (B) \(\displaystyle {{2\sqrt 3 } \over 3}\) (C) 1 (D)\(\displaystyle {4 \over 3}\)
Hãy chọn câu trả lời đúng.
Nếu \(\sqrt {2 + \sqrt x } = 3\) thì \(x\) bằng:
(A) \(1\); (B) \(\sqrt7\);
(C) \(7\) (D) \(49\)
Hãy chọn câu trả lời đúng.
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:
\(\displaystyle \left( {{{2 + \sqrt x } \over {x + 2\sqrt x + 1}} - {{\sqrt x - 2} \over {x - 1}}} \right).{{x\sqrt x + x - \sqrt x - 1} \over {\sqrt x }}.\)
Cho hàm số \(y = ax + b.\) Tìm \(a\) và \(b\), biết rằng đồ thị của hàm số đã cho thỏa mãn một trong các điều kiện sau:
a) Đi qua hai điểm \(A(1; 3)\) và \(B(-1; -1).\)
b) Song song với đường thẳng \(y = x + 5\) và đi qua điểm \(C(1; 2).\)
Cho hai đường thẳng:
\(y = (m + 1)x + 5 \) (d1)
\(y = 2x + n\) (d2)
Với giá trị nào của \(m\) và \(n\) thì:
a) d1 trùng với d2?
b) d1 cắt d2?
c) d1 song song với d2?
Chứng minh rằng khi \(k\) thay đổi, các đường thẳng \((k + 1)x – 2y = 1\) luôn đi qua một điểm cố định. Tìm điểm cố định đó.
Giải các hệ phương trình:
a) \(\left\{ \matrix{2{\rm{x}} + 3\left| y \right| = 13 \hfill \cr 3{\rm{x}} - y = 3 \hfill \cr} \right.\)
b) \(\left\{ \matrix{3\sqrt x - 2\sqrt y = - 2 \hfill \cr 2\sqrt x + \sqrt y = 1 \hfill \cr} \right.\)
Giải các hệ phương trình:
a) \(\left\{ \matrix{2\sqrt {x - 1} - \sqrt {y - 1} = 1 \hfill \cr \sqrt {x - 1} + \sqrt {y - 1} = 2 \hfill \cr} \right.\)
b) \(\left\{ \matrix{{\left( {x - 1} \right)^2} - 2y = 2 \hfill \cr 3{\left( {x - 1} \right)^2} + 3y = 1 \hfill \cr} \right.\)
Hai giá sách có \(450\) cuốn. Nếu chuyển \(50\) cuốn từ giá thứ nhất sang giá thứ hai thì số sách ở giá thứ hai sẽ bằng \(\displaystyle {4 \over 5}\) số sách ở giá thứ nhất. Tính số sách lúc đầu trong mỗi giá.
Quãng đường \(AB\) gồm một đoạn lên dốc dài \(4km\) và một đoạn xuống dốc dài \(5km\). Một người đi xe đạp từ \(A\) đến \(B\) hết \(40\) phút và đi từ \(B\) về \(A\) hết \(41\) phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.
Xác định hệ số \(a\) của hàm \(y = ax^2\), biết rằng đồ thị của nó đi qua điểm \(A(-2; 1)\). Vẽ đồ thị của hàm số đó.
Gọi \({{\bf{x}}_{\bf{1}}},{\rm{ }}{{\bf{x}}_{\bf{2}}}\) là hai nghiệm của phương trình \({\bf{3}}{{\bf{x}}^{\bf{2}}}-{\rm{ }}{\bf{ax}}{\rm{ }}-{\rm{ }}{\bf{b}}{\rm{ }} = {\rm{ }}{\bf{0}}\). Tổng \({{\bf{x}}_{\bf{1}}} + {\rm{ }}{{\bf{x}}_{\bf{2}}}\) bằng:
(A) \(\displaystyle - {a \over 3}\) (B) \(\displaystyle {a \over 3}\) (C) \(\displaystyle {b \over 3}\) (D) \(\displaystyle - {b \over 3}\)
Hãy chọn câu trả lời đúng.
Hai phương trình \({x^2} + ax + 1 = 0\) và \({x^2} - {\rm{ }}x{\rm{ }} - {\rm{ }}a{\rm{ }} = {\rm{ }}0\) có một nghiệm thực chung khi \(a\) bằng:
(A) 0 ; (B) 1 ; (C) 2 ; (D) 3
Hãy chọn câu trả lời đúng.
Giải các phương trình:
a) \(2{x^3} - {\rm{ }}{x^2} + {\rm{ }}3x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\) ;
b) \(x\left( {x{\rm{ }} + {\rm{ }}1} \right)\left( {x{\rm{ }} + {\rm{ }}4} \right)\left( {x{\rm{ }} + {\rm{ }}5} \right){\rm{ }} = {\rm{ }}12.\)
Một lớp học có \(40\) học sinh được xếp ngồi đều nhau trên các ghế băng. Nếu ta bớt đi \(2\) ghế băng thì mỗi ghế còn lại phải xếp thêm \(1\) học sinh. Tính số ghế băng lúc đầu.
Cạnh huyền của một tam giác vuông bằng \(10cm\). Hai cạnh góc vuông có độ dài hơn kém nhau \(2cm\). Tính độ dài các cạnh góc vuông của tam giác vuông đó.