Cho hàm số: \(f(x) = ax^2– 2(a + 1)x + a + 2 ( a ≠ 0)\)
a) Chứng tỏ rằng phương trình \(f(x) = 0\) luôn có nghiệm thực. Tính các nghiệm đó.
b) Tính tổng \(S\) và tích \(P\) của các nghiệm của phương trình \(f(x) = 0\). Khảo sát sự biến thiên và vẽ đồ thị hàm số của \(S\) và \(P\) theo \(a\).
Cho hàm số: \(\displaystyle y = - {1 \over 3}{x^3} + (a - 1){x^2} + (a + 3)x - 4.\)
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi \(a = 0.\)
b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng \(y = 0,\, x = -1,\, x = 1.\)
Cho hàm số : \(y = {x^3} + a{x^2} + bx + 1.\)
a) Tìm a và b để đồ thị của hàm số đi qua hai điểm A(1, 2) và B(-2, -1)
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b.
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường thẳng \(y = 0, \, x = 0, \, x = 1 \) và đồ thị (C) quanh trục hoành.
Xét chuyển động thẳng xác định bởi phương trình: \(\displaystyle s(t) = {1 \over 4}{t^4} - {t^3} + {{{t^2}} \over 2} - 3t\)
Trong đó t được tính bằng giây và s được tính bằng mét.
a) Tính \(v(2), a(2)\), biết \(v(t), a(t)\) lần lượt là vận tốc, gia tốc của chuyển động đã cho
b) Tìm thời điểm \(t\) mà tại đó vận tốc bằng \(0\)
Cho hàm số: \(y = {x^4} + a{x^2} + b.\)
a) Tính \(a,\, b\) để hàm số có cực trị bằng \(\displaystyle{3 \over 2}\) khi \(x = 1.\)
b) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số đã cho khi \(\displaystyle a = {{ - 1} \over 2}, \, \,b = 1.\)
c) Viết phương trình tiếp tuyến của \((C)\) tại các điểm có tung độ bằng \(1.\)
Cho hàm số \(\displaystyle y = {{x - 2} \over {x + m - 1}}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2.
b) Viết phương trình tiếp tuyến d của đồ thị (C) tại điểm có hoành độ a ≠ -1.
Cho hàm số \(\displaystyle y = {2 \over {2 - x}}\)
a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số đã cho.
b) Tìm các giao điểm của \((C)\) và đồ thị của hàm số \(y=x^2+1.\) Viết phương trình tiếp tuyến của \((C)\) tại mỗi giao điểm.
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng H giới hạn bởi đồ thị (C) và các đường thẳng \(y = 0, \, x = 0, \, x = 1\) xung quanh trục \(Ox.\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) \(f(x) = 2x^3– 3x^2– 12x + 1\) trên đoạn \(\displaystyle \left[ { - 2 ; \, {5 \over 2}} \right].\)
b) \( f(x) = x^2\ln x\) trên đoạn \(\left[ {1; \, e} \right].\)
c) \(f(x) = xe^{-x}\) trên nửa khoảng \([0; \, +∞).\)
d) \(f(x) = 2\sin x + \sin 2x\) trên đoạn \(\displaystyle\left[ {0; \,{{3\pi } \over 2}} \right].\)
Giải các phương trình sau:
a) \({13^{2x + 1}} - {13^x} - 12 = 0\)
b) \(({3^x} + {\rm{ }}{2^x})({3^x} + {\rm{ }}{3.2^x}){\rm{ }} = {\rm{ }}{8.6^x}\)
c) \({\log _{\sqrt 3 }}(x - 2).{\log _5}x = 2{\log _3}(x - 2)\)
d) \(\log_2^2x{\rm{ }}-{\rm{ }}5\log_2x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)
Giải các bất phương trình sau
a) \(\displaystyle{{{2^x}} \over {{3^x} - {2^x}}} \le 2\)
b) \(\displaystyle{({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1\)
c) \(\displaystyle{\log ^2}x + 3\log x \ge 4\)
d) \(\displaystyle{{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4}.\)
Tính các tích phân sau bằng phương pháp tính tích phân từng phần
a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)
b) \(\displaystyle \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)
c) \(\int_0^\pi {(\pi - x)\sin {\rm{x}}dx} \)
d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)
Tính các tích phân sau bằng phương pháp đổi biến số:
a) \(\displaystyle \int\limits_0^{{\pi \over 24}} {\tan ({\pi \over 4} - 4x)dx} \) (đặt \(u = \cos ({\pi \over 3} - 4x)\) )
b) \(\displaystyle \int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(\displaystyle x = {3 \over 5}\tan t\) )
c) \(\displaystyle \int\limits_0^{{\pi \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt \(u = \cos x\))
d) \(\displaystyle \int\limits_{{{ - \pi } \over 4}}^{{\pi \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) )
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
a) \(y = x^2 + 1, x = -1, x = 2\) và trục hoành
b) \(\displaystyle y = \ln x, x = {1 \over e}, x = e\) và trục hoành
Tìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = 2x^2\) và \(y = x^3\) xung quanh trục Ox
Giải các phương trình sau trên tập số phức
a) \((3 + 2i)z – (4 + 7i) = 2 – 5i\)
b) \((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)
c) \(z^2 – 2z + 13 = 0\)
d) \(z^4 -z^2– 6 = 0\)
Trên mặt phẳng tọa độ, hãy tìm tập hợp điểm biểu diễn số phức \(z\) thỏa mãn bất đẳng thức:
a) \(| z| < 2\)
b) \(|z – i| ≤ 1\)
c) \(|z – 1 – i| < 1\)