Dựng hình thang \(ABCD\, (AB// CD)\), biết ba cạnh: \(AD = 2cm, CD = 4 cm, BC = 3cm\) và đường chéo \(AC = 5 cm.\)
Cho hình thang \(ABCD \;(AB // CD)\) có hai đường chéo cắt nhau ở \(O\) và tam giác \(ABO\) là tam giác đều. Gọi \(E, F, G\) theo thứ tự là trung điểm của các đoạn thẳng \(OA, OD\) và \(BC\). Chứng minh rằng tam giác \(EFG\) là tam giác đều.
Tam giác \(ABC\) có các đường cao \(BD, CE\) cắt nhau tại \(H\). Đường vuông góc với \(AB\) tại \(B\) và đường vuông góc với \(AC\) tại \(C\) cắt nhau ở \(K\). Tam giác \(ABC\) phải có điều kiện gì thì tứ giác \(BHCK\) là:
a) Hình thoi?
b) Hình chữ nhật?
Cho hình bình hành \(ABCD\). Các điểm \(M, N\) theo thứ tự là trung điểm của \(AB, CD\). Gọi \(E\) là giao điểm của \(AN\) và \(DM\), \(K\) là giao điểm của \(BN\) và \(CM\). Hình bình hành \(ABCD\) phải có điều kiện gì để tứ giác \(MENK\) là:
a) Hình thoi?
b) Hình chữ nhật?
c) Hình vuông?
Trong tam giác \(ABC\) các đường trung tuyến \(AA’\) và \(BB’\) cắt nhau ở \(G\). Tính diện tích tam giác \(ABC\) biết rằng diện tích tam giác \(ABG\) bằng \(S.\)
Cho tam giác \(ABC\) và đường trung tuyến \(BM\). Trên đoạn thẳng \(BM\) lấy điểm \(D\) sao cho \(\dfrac{{B{\rm{D}}}}{{DM}} = \dfrac{1}{2}\) . Tia \(AD\) cắt \(BC\) ở \(K\). Tìm tỉ số diện tích của tam giác \(ABK\) và tam giác \(ABC.\)
Cho tam giác \(ABC\; (AB < AC)\). Tia phân giác của góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\), cắt \(AC\) ở \(E\). Chứng minh \(BD = CE\).
Trên hình 151 cho thấy ta có thể xác định chiều rộng \(BB’\) của khúc sông bằng cách xét hai tam giác đồng dạng \(ABC\) và \(AB’C’\). Hãy tính \(BB’\) nếu \(AC = 100 \,m\), \(AC’ = 32\, m, \,AB’ = 34\,m.\)
Cho tam giác \(ABC\) có \(AB < AC\), \(D\) là một điểm nằm giữa \(A\) và \(C\). Chứng minh rằng : \(\widehat {ABD} = \widehat {ACB} \Leftrightarrow A{B^2} = AC.AD\)
Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có \(AB = 12 cm\), \(AD = 16 cm\), \(AA’ = 25 cm\).
a) Chứng minh các tứ giác \(ACC’A’\), \(BDD’B’\) là những hình chữ nhật.
b) Chứng minh rằng \(AC'{^2} = A{B^2} + A{D^2} + AA'{^2}\).
c) Tính diện tích toàn phần và thể tích của hình hộp chữ nhật.
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy \(AB = 20\, cm\), cạnh bên \(SA = 24\,cm.\)
a) Tính chiều cao \(SO\) rồi tính thể tích của hình chóp.
b) Tính diện tích toàn phần của hình chóp.