Hãy đưa ra một ví dụ để chứng tỏ rằng đường kính đi qua trung điểm của một dây có thể không vuông góc với dây ấy.
Cho hình 67. Hãy tính độ dài dây AB, biết OA = 13 cm, AM = MB, OM = 5 cm.
Cho tam giác \(ABC\), các đường cao \(BD\) và \(CE\). Chứng minh rằng:
a) Bốn điểm \(B,\ E,\ D,\ C\) cùng thuộc một đường tròn.
b) \(DE < BC\)
Cho đường tròn \((O)\) đường kính \(AB\), dây \(CD\) không cắt đường kính \(AB\). Gọi \(H\) và \(K\) theo thứ tự là chân các đường vuông góc kẻ từ \(A\) và \(B\) đến \(CD\). Chứng minh rằng \(CH=DK\)
Gợi ý: Kẻ \(OM\) vuông góc với \(CD\).
Cho đường tròn (O; R) và một dây cung AB. Gọi I là trung điểm của AB. Tia OI cắt cung AB tại M.
a. Cho R = 5cm, AB = 6cm. Tính độ dài dây cung MA.
b. Cho MN là đường kính của đường tròn (O; R), biết AN = 10cm và dây AB = 12cm. Tính bán kính R.
Cho đường tròn (O) đường kính \(AB = 2R\). Một dây CD không đi qua tâm O sao cho \(\widehat {COD} = 90^\circ \) và CD cắt đường thẳng AB tại E (D nằm giữa hai điểm E và C), biết \(OE = 2R\). Tính độ dài EC và ED theo R.
Cho đường tròn (O) đường kính AB. Dây CD cắt đường kính AB tại điểm I. Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng : \(CH = DK.\)
Cho đường tròn tâm O, đường kính AB. Từ A và B kẻ hai dây cung AC và BD song song với nhau.
a. Chứng minh : \(AC = BD\).
b. Chứng minh rằng ba điểm C, O, D thẳng hàng.
Cho đường tròn (O). Hai dây AB và CD song song với nhau. Biết \(AB = 30cm, CD = 40cm\), khoảng cách giữa hai dây là 35cm. Tính bán kính đường tròn (O).