Vì sao một đường thẳng và một đường tròn không thể có nhiều hơn hai điểm chung ?
Cho đường thẳng a và có một điểm O cách a là 3cm. Vẽ đường tròn tâm O bán kính 5cm.
a) Đường thẳng a có vị trí như thế nào đối với đường tròn (O) ? Vì sao ?
b) Gọi B và C là các giao điểm của đường thẳng a và đường tròn (O). Tính độ dài BC.
Điền vào các chỗ trống (...) trong bảng sau (\(R\) là bán kính của đường tròn, \(d\) là khoảng cách từ tâm đến đường thẳng):
\(R\) |
\(d\) |
Vị trí tương đối của đường thẳng và đường tròn |
\(5cm\) \(6cm\) \(4cm\) |
\(3cm\) … \(7cm\) |
… Tiếp xúc nhau … |
Trên mặt phẳng tọa độ \(Oxy\), cho điểm \(A(3;4)\). Hãy xác định vị trí tương đối của đường tròn \((A;3)\) và các trục tọa độ.
Cho đường thẳng \(xy\). Tâm của các đường tròn có bán kính \(1cm\) và tiếp xúc với đường thẳng \(xy\) nằm trên đường nào?
Cho đường tròn tâm \(O\) bán kính \(6cm\) và một điểm \(A\) cách \(O\) là \(10cm\). Kẻ tiếp tuyến \(AB\) với đường tròn (\(B\) là tiếp điểm). Tính độ dài \(AB\).
Cho nửa đường tròn (O), đường kính AB và một dây cung CD. Vẽ AP và BS vuông góc với CD. Chứng minh:
a. P và S ở bên ngoài đường tròn.
b. \(PC = DS\)
Cho ∆ABC vuông tại A có \(AB = 3cm, AC = 4cm\). Vẽ đường tròn tâm A bán kính 2,8cm. Hãy xác định vị trí tương đối của đường thẳng BC và đường tròn (A; 2,8cm)
Cho hình vuông ABCD. Trên đường chéo BD lấy \(BH = BA\) (H nằm giữa hai điểm B và D). Qua H kẻ đường thẳng vuông góc với BD và đường này cắt AD tại O.
a. So sánh OA, OH và HD
b. Xác định vị trí tương đối của đường thẳng BD với đường tròn (O; OA).
Cho ∆ABC cân tại A, đường cao AH và BK cắt nhau tại I. Chứng minh rằng HK là tiếp tuyến của đường tròn đường kính AI.
Cho ∆ABC có \(AB = 6cm, AC = 8cm\) và \(BC = 10cm\). Vẽ đường tròn (B; BA) và đường tròn (C; CA).
a. Chứng minh rằng AB là tiếp tuyến của đường tròn (C; CA) và AC là tiếp tuyến của đường tròn (B; BA).
b. AB cắt đường tròn (B) tại D và AC cắt đường tròn (C) tại E. Chứng minh rằng ba điểm D, M, E thẳng hàng (M là giao điểm thứ hai của hai đường tròn).