Kim giờ và kim phút của đồng hồ tạo thành một góc ở tâm có số đo là bao nhiêu độ vào những thời điểm sau:
a) 3 giờ;
b) 5 giờ;
c) 6 giờ;
d) 12 giờ;
e) 20 giờ.
Cho hai đường thẳng \(xy\) và \(st\) cắt nhau tại \(O\), trong các góc tạo thành có góc \(40^{\circ}\). Vẽ một đường tròn tâm \(O\). Tính số đo của các góc ở tâm xác định bởi hai trong bốn tia gốc O.
Trên các hình 5, 6, hãy dùng dụng cụ đo góc để tìm số đo cung \(\overparen{AmB}\). Từ đó tính số đo cung \(\overparen{AnB}\) tương ứng.
Xem hình 7. Tính số đo góc ở tâm \(AOB\) và số đo cung lớn \(AB\)
Hai tiếp tuyến của đường tròn \((O)\) tại \(A\) và \(B\) cắt nhau tại \(M\). Biết \(\widehat{AMB}\).
a) Tính số đo của góc ở tâm tạo bởi hai bán kính \(OA, OB\).
b) Tính số đo mỗi cung \(AB\) (cung lớn và cug nhỏ).
Cho tam giác đều \(ABC\). Gọi \(O\) là tâm của đường tròn đi qua ba đỉnh \(A, B, C\).
a) Tính số đo các góc ở tâm tạo bởi hai trong ba bán kính \(OA, OB, OC\).
b) Tính số đo các cung tạo bởi hai trong ba điểm \(A, B, C\).
Cho hai đường tròn cùng tâm \(O\) với bán kính khác nhau. Hai đường thẳng đi qua \(O\) cắt hai đường tròn đó tại các điểm \(A, B, C, D, M, N, P, Q\) (h.8)
a)Em có nhận xét gì về số đo của các cung \(AM, CP, BN, DQ\).
b) Hãy nêu tên các cung nhỏ bằng nhau.
c) Hãy nêu tên hai cung lớn bằng nhau.
Mỗi khẳng định sau đây đúng hay sai? Vì sao?
a) Hai cung bằng nhau thì có số đo bằng nhau.
b) Hai cung có số đo bằng nhau thì bằng nhau.
c) Trong hai cung, cung nào có số đo lớn hơn là cung lớn hơn.
d) Trong hai cung trên một đường tròn, cung nào có số đo nhỏ hơn thì nhỏ hơn.
Trên đường tròn tâm \(O\) lấy ba điểm \(A, B, C\) sao cho \(\widehat{AOB} = 100^0\), sđ cung \(\overparen{AC} = 45^0\). Tính số đo của cung nhỏ \(\overparen{BC}\) và cung lớn \(\overparen{BC}\). (Xét cả hai trường hợp: điểm \(C\) nằm trên cung nhỏ \(\overparen{AB}\), điểm \(C\) nằm trên cung lớn \(\overparen{AB}\)).
Cho đường tròn (O) dây cung AB. Tiếp tuyến của (O) tại A và B cắt nhau tại M. Biết \(\widehat {AMB} = 50^\circ \).
a) Tính số đo cung AB.
b) Trên nửa mặt phẳng bờ OB ( không chứa điểm A), kẻ đườngthẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Cho đường tròn (O; R). Một điểm A ở ngoài đường tròn sao cho OA = 2R. Vẽ các tiếp tuyến AB và AC đến (O) ( A , B là hai tiếp điểm).
a) Tính số đo các \(\widehat {AOB}\) và \(\widehat {BOC}\).
b) Tính số đo cung nhỏ và cung lớn BC.
Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm phân biệt A và B. Biết rằng hai cung nhỏ AB của hai đường tròn này có số đo (độ) bằng nhau. Chứng minh rằng hai đường tròn (O) và (O') bằng nhau.
Cho ∆ABC đều. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ nửa hình tròn đường kính BC. Lấy D thuộc nửa đường tròn sao cho cung CD = 60º. Gọi I là giao điểm của AD và BC. Chứng minh rằng: BI = 2CI.
Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC và AO’D. Hãy so sánh số đo (độ) của hai cung nhỏ BC và BD của hai đường tròn, biết rằng R > R’.