1)
\(\begin{array}{l}\dfrac{{AB'}}{{AB}} = \dfrac{2}{6} = \dfrac{1}{3}\\\dfrac{{AC'}}{{AC}} = \dfrac{3}{9} = \dfrac{1}{3}\\ \Rightarrow \dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}}\end{array}\)
2)
a) Vì \(B'C''//BC\) , theo định lí Ta-lét ta có:
\(\dfrac{{AB'}}{{AB}} = \dfrac{{AC''}}{{AC}} = \dfrac{1}{3}\)
\( \Rightarrow AC'' = \dfrac{1}{3}AC = \dfrac{1}{3}.9 = 3\,cm\)
b) Ta có: \(AC' = AC'' = 3\,cm \Rightarrow C' \equiv C''\)
Do \(C' \equiv C'' \Rightarrow B'C' \equiv B'C''\) nên \(B'C'//BC\)