\(\eqalign{& \sin B = {b \over a};\,\,\cos B = {c \over a};\,\,tgB = {b \over c};\,\,{\mathop{\rm cotgB}\nolimits} = {c \over b} \cr & \sin C = {c \over a};\,\,\cos C = {b \over a};\,\,tgC = {c \over b};\,\,{\mathop{\rm cotgB}\nolimits} = {b \over c} \cr} \)
a)
\(\eqalign{& b = a.\left( {{b \over a}} \right) = a.\sin B = a.\cos C \cr & c = a.\left( {{c \over a}} \right) = a.\cos B = a.\sin C \cr} \)
b)
\(\eqalign{& b = c.\left( {{b \over c}} \right) = c.tgB = c.{\mathop{\rm cotg}\nolimits} C \cr & c = b.\left( {{c \over b}} \right) = b.{\mathop{\rm cotg}\nolimits} B = b.tgC \cr} \)