Trả lời câu hỏi 2 Bài 8 trang 32 SGK Toán 9 Tập 1

Chứng minh đẳng thức \(\dfrac{{a\sqrt a  + b\sqrt b }}{{\sqrt a  + \sqrt b }} - \sqrt {ab}  = {\left( {\sqrt a  - \sqrt b } \right)^2}\)  với \(a > 0,b > 0\). 

Lời giải

Ta có \(VT = \dfrac{{a\sqrt a  + b\sqrt b }}{{\sqrt a  + \sqrt b }} - \sqrt {ab} \\ = \dfrac{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}}{{\sqrt a  + \sqrt b }} - \sqrt {ab} \) \( = \dfrac{{\left( {\sqrt a  + \sqrt b } \right)\left( {a - \sqrt {ab}  + b} \right)}}{{\sqrt a  + \sqrt b }} - \sqrt {ab} \) \( = a - \sqrt {ab}  + b - \sqrt {ab}  \\= {\left( {\sqrt a } \right)^2} - 2\sqrt {ab}  + {\left( {\sqrt b } \right)^2}\) \( = {\left( {\sqrt a  - \sqrt b } \right)^2} = VP\) (đpcm).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”