\(\eqalign{
& 6y - 36 = 6\left( {y - 6} \right) \cr
& {y^2} - 6y = y\left( {y - 6} \right) \cr
& \Rightarrow MTC = 6y\left( {y - 6} \right) \cr
& {{y - 12} \over {6y - 36}} + {6 \over {{y^2} - 6y}} \cr
& = {{y - 12} \over {6\left( {y - 6} \right)}} + {6 \over {y\left( {y - 6} \right)}} \cr
& = {{y\left( {y - 12} \right)} \over {6y\left( {y - 6} \right)}} + {{6.6} \over {6y\left( {y - 6} \right)}} \cr
& = {{{y^2} - 12y} \over {6y\left( {y - 6} \right)}} + {{36} \over {6y\left( {y - 6} \right)}} \cr
& = {{{y^2} - 12y + 36} \over {6y\left( {y - 6} \right)}} = {{{y^2} - 2.y.6 + {6^2}} \over {6y\left( {y - 6} \right)}} \cr
& = {{{{\left( {y - 6} \right)}^2}} \over {6y\left( {y - 6} \right)}} = {{y - 6} \over {6y}} \cr} \)