Ta có:
\(\eqalign{
& {{3x + 3} \over {3x}} = 3 \cr
& \Rightarrow {{3x + 3} \over {3x}} = {3 \over 1} \cr
& \left( {3x + 3} \right).1 = 3x + 3 \cr
& 3x.3 = 9x \cr
& \Rightarrow \left( {3x + 3} \right).1 \ne 3x.3 \cr
& \Rightarrow {{3x + 3} \over {3x}} \ne 3 \cr} \)
Ta có:
\(\eqalign{
& x.\left( {3x + 3} \right) = x.3x + x.3 = 3{x^2} + 3x \cr
& 3x.\left( {x + 1} \right) = 3x.x + 3x.1 = 3{x^2} + 3x \cr
& \Rightarrow x.\left( {3x + 3} \right) = 3x.\left( {x + 1} \right) \cr
& \Rightarrow {{3x + 3} \over {3x}} = {{x + 1} \over x} \cr} \)
Vậy bạn Vân nói đúng, Quang nói sai.