Gọi O, O’ lần lượt là tâm các hình vuông ABCD, A’B’C’D’ của hình lập phương ABCD.A’B’C’D’ cạnh a.
* Ta chứng minh B’D ⊥ (BA’C) và B’D ⊥ (ACD’)
Ta có: \(\left\{ {\matrix{ {A'C' \bot B'D'} \cr {A'C' \bot BB'} \cr } } \right. \Rightarrow A'C' \bot \left( {BB'D'D} \right)\)
Mà B’D ⊂ (BB’D’D) nên B’D ⊥ A’C’ (1)
Tương tự \(\left\{ {\matrix{ {AB' \bot A'B} \cr {A'B \bot B'C'} \cr } } \right. \Rightarrow A'B \bot \left( {AB'C'D} \right)\)
Mà B’D ⊂ (AB’C’D) nên B’D ⊥ A’B (2)
Từ (1) và (2) suy ra B’D ⊥ (BA’C’)
Tương tự ta cũng chứng minh được B’D ⊥ (ACD’)
* Hai mặt phẳng (BA’C’) và (ACD’) song song với nhau, vuông góc với đoạn B’D và chia B’D thành 3 phần bằng nhau (xét hình bình hành BB’DD’ và BO // D’O')
Do đó khoảng cách giữa mp(BA’C) và mp(ACD’) là \({{B'D} \over 3} = {{a\sqrt 3 } \over 3}\)
* Khoảng cách giữa BC’ và CD’
Khoảng cách giữa hai đường thẳng chéo nhau BC’ và CD’ bằng khoảng cách giữa hai mặt phẳng song song : mp(BA’C’) và mp(ACD’).
Vậy khoảng cách đó là \({{a\sqrt 3 } \over 3}\)