a. Gọi I và J lần lượt là trung điểm của SB và AC thì dễ thấy các điểm K, I, N, J cùng thuộc mặt phẳng song song với AB và SC. Vậy mặt phẳng đi qua K, song song với AB và SC thì đi qua điểm N.
b. Nếu M là trung điểm của SC thì thiết diện của hình chóp S.ABC khi cắt bởi mp(MKN) là hình bình hành, trong đó P là trung điểm của AB. Khi đó KN chia hình bình hành MKPN thành hai phần có diện tích bằng nhau. Nếu M không là trung điểm của SC. Gọi Q là giao điểm của KM và AC, P là giao điểm của QN và AB. Khi đó thiết diện của hình chóp S.ABC cắt bởi mp(MKN) là tứ giác MKPN.
Ta có: SC // (α) và AB // (α), đồng thời K là trung điểm SA nên : d(M, (α)) = d(P, (α))
⇒ OP = OM (với O là giao điểm của PM và NK)
Do đó hai đường cao của hai tam giác MKN và PKN kẻ từ M và P bằng nhau,
Từ đó suy ra \({S_{PKN}} = {S_{MKN}}\)