Kẻ \(SH \bot \left( {ABC} \right)\) và \(HA',HB',HC'\) lần lượt vuông góc với \(BC,CA,AB\). Theo định lí ba đường vuông góc ta có \(SA' \bot BC,SB' \bot CA,SC' \bot AB\)
Từ đó suy ra \(\widehat {SA'H} = \widehat {SB'H} = \widehat {SC'H} = {60^0}\).
\( \Rightarrow \Delta SHA' = \Delta SHB' = \Delta SHC'\)\( \Rightarrow HA' = HB' = HC'\)
Do đó \(H\) là tâm đường tròn nội tiếp tam giác \(ABC\). Do tam giác cân ở \(A\) nên \(AH\) vừa là đường phân giác, vừa là đường cao, vừa là đường trung tuyến.
\( \Rightarrow A,H,A'\) thẳng hàng và \(A'\) là trung điểm của \(BC\).
Tam giác \(\Delta AA'B\) vuông tại \(A'\) nên \(AA{'^2} = A{B^2}-BA{'^2}\) \( = 25{a^2}-9{a^2} = 16{a^2}\) \( \Rightarrow AA' = 4a\)
Gọi \(p\) là nửa chu vi của tam giác \(ABC\), \(r\) là bán kính đường tròn nội tiếp tam giác \(r = HA'\).
Khi đó \({S_{ABC}} = \dfrac{1}{2}6a.4a = 12{a^2} = pr = 8ar\)\( \Rightarrow r = \dfrac{3}{2}a\)
\( \Rightarrow SH = HA'.\tan {60^0} = \dfrac{{3a}}{2}\sqrt 3 = \dfrac{{3\sqrt 3 }}{2}a\)
Thể tích khối chóp là \(V = \dfrac{1}{3}.12{a^2}.\dfrac{{3\sqrt 3 }}{2}a = 6\sqrt 3 {a^3}\)