Bài 1.13 trang 18 SBT hình học 12

Chứng minh rằng tổng các khoảng cách từ một điểm bất kì trong một tứ diện đều đến các mặt của nó là một số không đổi.

Lời giải

Xét tứ diện đều \(ABCD\), \(M\) là một điểm trong của nó.

Gọi \(V\) là thể tích, \(S\) là diện tích mỗi mặt của tứ diện đều \(ABCD\), \({h_A},{h_B},{h_C},{h_D}\) lần lượt là khoảng cách từ \(M\) đến các mặt \(\left( {BCD} \right),\left( {CDA} \right),\left( {DAB} \right),\left( {ABC} \right)\).

Ta có: \({V_{M.BCD}} = \dfrac{1}{3}S{h_A},{V_{M.CDA}} = \dfrac{1}{3}S{h_B},\) \({V_{M.DAB}} = \dfrac{1}{3}S{h_C},{V_{M.ABC}} = \dfrac{1}{3}S{h_D}\)

Khi đó ta có \(V = {V_{MBCD}} + {V_{MCDA}} + {V_{MDAB}} + {V_{MABC}}\)\( = \dfrac{1}{3}S\left( {{h_A} + {h_B} + {h_C} + {h_D}} \right)\)

\( \Rightarrow {h_A} + {h_B} + {h_C} + {h_D} = \dfrac{{3V}}{S}\).

Mà \(V,S\) là các số không đổi nên \({h_A} + {h_B} + {h_C} + {h_D}\) không đổi. (đpcm)