a) Thiết diện qua trục của hình nón là tam giác vuông cân cạnh \(a\) nên hình nón có đường sinh \(l=a\), có đường kính đáy \(a\sqrt 2 \) nên bán kính đáy \(r = \dfrac{{a\sqrt 2 }}{2}\), và có chiều cao \(h = r = \dfrac{{a\sqrt 2 }}{2}\)
Gọi \({S_{xq}}\) là diện tích xung quanh của hình nón, ta có: \({S_{xq}} = \pi rl = \pi \dfrac{{a\sqrt 2 }}{2}.a = \dfrac{{\pi {a^2}\sqrt 2 }}{2}\)
Gọi \(S\) là diện tích đáy của hình nón, ta có \({S_d} = \pi {r^2} = \dfrac{{\pi {a^2}}}{2}\)
Vậy diện tích toàn phần của hình nón đã cho là:
\({S_{tp}} = {S_{xq}} + {S_d}\)\( = \dfrac{1}{2}\pi {a^2}\sqrt 2 + \dfrac{1}{2}\pi {a^2}\) \( = \dfrac{1}{2}\pi {a^2}\left( {\sqrt 2 + 1} \right)\)
Hình nón có thể tích là: \(V = \dfrac{1}{3}\pi {r^2}\)\( = \dfrac{1}{3}\pi {\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}.\dfrac{{a\sqrt 2 }}{2}\) \( = \dfrac{1}{{12}}\pi {a^3}\sqrt 2 \)
b) Xét mặt phẳng \((DAM) \) đi qua đỉnh \(D\) tạo với mặt phẳng đáy một góc \({60^0}\), cắt đường tròn đáy tại hai điểm \(A\) và \(M\).
Từ tâm \(O\) của đường tròn đáy ta vẽ \(OH \bot AM\), do vậy \(H\) là trung điểm của đoạn \(AM\). Ta có \(AM \bot (DOH)\) vì \(AM \bot OH\) và \(AM \bot DO\).
Vậy \(\widehat {DHO} = {60^0}\) và \(\sin {60^0} = \dfrac{{DO}}{{DH}}\) hay \(DH = \dfrac{{DO}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{2}:\dfrac{{\sqrt 3 }}{2} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }}\)
Gọi \({S_{\Delta DAM}}\) là diện tích thiết diện cần tìm, ta có: \({S_{\Delta DAM}} = \dfrac{1}{2}AM.DH = AH.DH\)
Mà \(A{H^2} = D{A^2} - D{H^2}\)\( = {a^2} - \dfrac{{2{a^2}}}{3} = \dfrac{{{a^2}}}{3}\) \( \Rightarrow AH = \dfrac{a}{{\sqrt 3 }}\)
Vậy \({S_{\Delta DAM}} = AH.DH = \dfrac{a}{{\sqrt 3 }}.\dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{{a^2}\sqrt 2 }}{3}\)