\(\left\{ \matrix{
AA' \bot \left( \alpha \right) \hfill \cr
BB' \bot \left( \alpha \right) \hfill \cr} \right. \Rightarrow AA'\parallel BB'\)
Mặt phẳng \((AA’, BB’) \) xác định bởi hai đường thẳng song song \((AA’, BB’) \) cắt mặt phẳng \(\left( \alpha \right)\) theo giao tuyến qua \(O, A’, B’.\)
Do đó ba điểm \(O, A’, B’ \) thẳng hàng.
Hai tam giác vuông \(OAA’ \) và \(OBB’ \) bằng nhau vì có một cạnh huyền và một góc nhọn bằng nhau nên từ đó ta suy ra \(AA’ = BB’\).