Đề bài
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng khoảng cách từ các điểm A’, B, D; C, B’, D tới đường chéo AC’ bằng nhau. Tính khoảng cách đó.
Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên \(SA = SB = SC = S{\rm{D}} = a\sqrt 2 \). Gọi I và K lần lượt là trung điểm của AD và BC.
a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).
b) Tính khoảng cách giữa hai đường thẳng AD và SB.
Cho hình lập phương ABCD.A’B’C’D’.
a) Chứng minh đường thẳng BC’ vuông góc với mặt phẳng (A’B’CD)
b) Xác định và tính độ dài đoạn vuông góc chung của AB’ và BC’.
Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SA vuông góc với mặt phẳng đáy (ABCD) với \(SA = a\sqrt 6 \).
a) Tính khoảng cách từ A và B đến mặt phẳng (SCD).
b) Tính khoảng cách từ đường thẳng AD đến mặt phẳng (SBC).
Tính khoảng cách giữa hai cạnh đối trong một tứ diện đều cạnh a.
Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng \(AC = BC = A{\rm{D}} = B{\rm{D}} = a\) và \(AB = p,C{\rm{D}} = q\).
Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC.
a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC).
b) Tính khoảng cách giữa hai đường thẳng AB và SG.
Cho hình lăng trụ tam giác ABC.A’B’C’có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60° và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A’B’C’) trùng với trung điểm của cạnh B’C’.
a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.
b) Chứng minh rằng mặt bên BCC’B’ là một hình vuông.