- Mặt phẳng \((EFB)\) chính là mặt phẳng \((ABF)\), mặt phẳng này chứa cạnh \(AB//CD\) nên \((EFB) ∩ (DCC'D')=GF // AB \,\,\, (G \in CC')\)
Ta có thiết diện là hình bình hành \(ABGF\) như hình dưới đây.
Tuy nhiên ta lại có \(AB \bot \left( {ADD'A'} \right) \Rightarrow AB \bot AF \Rightarrow ABGF\) là hình chữ nhật.
- Trong mặt phẳng \((ABCD), CE ∩ DA\) tại \(J\). Trong mặt phẳng \((ADD’A’)\) có \(JF ∩ AA’\) tại \(I\).
Thiết diện cần dựng là hình thang \(CFIE\) (\(IE // FC\)) như hình dưới đây:
- Trong mặt phẳng \((DCC’D’)\), \(C’F ∩ CD\) tại \(M\). Trong mặt phẳng \((ABCD)\), \(EM ∩ AD\) tại \(N\), \(FN\) là giao tuyến của mặt phẳng \((C’EF)\) với mặt bên \((ADD’A’)\).
Trong mặt phẳng \((ABCD)\), \(ME ∩ BC\) tại \(Q\). Trong mặt phẳng \((BCC’B’)\), \(C’Q ∩ BB’\) tại \(P\).
Thiết diện cần dựng là hình ngũ giác \(C’PENF\) như hình dưới đây:
- Gọi \(E, H, F, I, K, J\) theo thứ tự là trung điểm của \(AB, AD, DD’, D’C’, C’B’, BB’\). Ta dễ dàng chứng minh được 6 điểm \(E, H, F, I, K, J\) nằm trên cùng một mặt phẳng. Mặt phẳng này chính là mặt phẳng \((EFK)\) và thiết diện có được là hình lục giác \(EHFIKJ\). Lục giác này có ba cặp cạnh đối song song và bằng nhau nên nó là lục giác đều. Hình dưới đây: