Ý kiến trên đúng.
Giả sử ngược lại hàm số \(y = f(x) + g(x)\) liên tục tại \(x_0\).
Đặt \(h(x) = f(x) + g(x)\) liên tục tại \(x=x_0\).
\( \Rightarrow g(x) = h(x) - f(x)\).
Vì \(y = h(x)\) và \(y = f(x)\) liên tục tại \(x_0\) \( \Rightarrow h\left( x \right);\,\, - f\left( x \right)\) là các hàm số liên tục tại \(x_0\).
Theo giả sử ta có hàm số \(h\left( x \right) + \left( { - f\left( x \right)} \right) = h\left( x \right) - f\left( x \right) = g\left( x \right)\) phải liên tục tại \(x_0\). Điều này trái với giả thiết là \(y = g(x)\) không liên tục tại \(x_0\).
Vậy giả sử ban đầu sai. Chứng tỏ \(y = f(x) + g(x)\) không liên tục tại \(x_0\).