a)
+) \(\mathop {\lim }\limits_{x \to 0} f(x) = \mathop {\lim }\limits_{x \to 0} {{1 - {x^2}} \over {{x^2}}} = + \infty \)
Vì: \(\mathop {\lim }\limits_{x \to 0} (1 - {x^2}) = 1 > 0,\)
\(\mathop {\lim }\limits_{x \to 0} {x^2} = 0;{x^2} > 0,\forall x \ne 0\)
+) \(\mathop {\lim }\limits_{x \to 0} g(x) = \mathop {\lim }\limits_{x \to 0} {{{x^3} + {x^2} + 1} \over {{x^2}}} = + \infty \)
Vì: \(\mathop {\lim }\limits_{x \to 0} ({x^3} + {x^2} + 1) = 1 > 0,\mathop {\lim }\limits_{x \to 0} {x^2} = 0,{x^2} > 0,\) \(\forall x \ne 0\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } {{1 - {x^2}} \over {{x^2}}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{{x^2}({1 \over {{x^2}}} - 1)} \over {{x^2}}} = \mathop {\lim }\limits_{x \to + \infty } ({1 \over {{x^2}}} - 1) = - 1 \cr} \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } {{{x^3} + {x^2} + 1} \over {{x^2}}} \cr&= \mathop {\lim }\limits_{x \to + \infty } {{{x^3}(1 + {1 \over x} + {1 \over {{x^3}}})} \over {{x^3}({1 \over x})}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x} + {1 \over {{x^3}}}} \over {{1 \over x}}} = + \infty \cr} \)
b) Gọi \((C_1)\) và \((C_2)\) lần lượt là hai đồ thị của hàm số \(y = f(x)\) và \(y = g(x)\)
Vì
\(\left\{ \matrix{ \mathop {\lim }\limits_{x \to 0} f(x) = + \infty \hfill \cr \mathop {\lim }\limits_{x \to 0} g(x) = + \infty \hfill \cr} \right.\)
nên hai đồ thị \((C_1)\) và \((C_2)\) có nhánh vô tận đi lên khi \(x \rightarrow 0\).
+) Vì \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - 1\) nên \((C_1)\) có nhánh vô tận tiến gần đến đường thẳng \(y = -1\) \(khi x \rightarrow ∞\)
+) Vì \(\mathop {\lim }\limits_{x \to + \infty } g(x) = + \infty \) \((C_2)\) có nhánh vô tận đi lên khi \(x \rightarrow +∞\)
Dựa vào đặc điểm của \((C_1)\) và \((C_2)\) như trên ta có\((C_1)\) là đồ thị b và \((C_2)\) là đồ thị a.