Giả sử T là phép thử “Gieo ba con súc sắc”.
Kết quả của T là bộ ba số \((x, y, z)\), trong đó \(x, y, z\) tương ứng là kết quả của việc gieo con súc sắc thứ nhất, thứ hai, thứ ba.
Không gian mẫu T có \(6.6.6 = 216\) phần tử.
Gọi A là biến cố “Tổng số chấm trên mặt xuất hiện của ba con súc sắc là 9”.
Ta có tập hợp các kết quả thuận lợi cho A là :
\({\Omega _A} = \left\{ {\left( {x,y,z} \right)|x + y + z = 9;\,\,1 \le x \le 6;\,\,1 \le y \le 6;\,\,1 \le {\rm{ }}z \le 6\text{ và }\,\,x,y,z \in {N^*}} \right\}.\)
Nhận xét : \(9 = 1 + 2 + 6 = 1 + 3 + 5 = 2 + 3 + 4 = 1 + 4 + 4 = 2 + 2 + 5 = 3 + 3 + 3\)
Tập {1, 2, 6} cho ta 6 phần tử của \({\Omega _A}\) là (1, 2, 6), (1, 6, 2), (6, 1, 2), (6, 2, 1), (2, 1, 6), (2, 6, 1)
Tương tự các tập {1, 3, 5}, {2, 3, 4}, mỗi tập cho ta 6 phần tử của \({\Omega _A}\) ;
Tập {3, 3, 3} cho ta duy nhất một phần tử của \({\Omega _A}\)
Vậy \(\left| {{\Omega _A}} \right| = 6 + 6 + 6 + 3 + 3 + 1 = 25\)
Suy ra \(P\left( A \right) = {{25} \over {216}}\)