Bài 14 trang 82 SGK Hình học 12 Nâng cao

Bài 14. Trong mỗi trường hợp sau, hãy viết phương trình mặt cầu :

a) Đi qua ba điểm A(0 ; 8 ; 0), B(4; 6 ; 2), C(0 ; 12 ; 4) và có tâm nằm trên mp(Oyz);

b) Có bán kính bằng 2, tiếp xúc với mặt phẳng (Oyz) và có tâm nằm trên tia Ox;

c) Có tâm I(1 ; 2 ; 3) và tiếp xúc với mp(Oyz).

 

Lời giải

a) Tâm I của mặt cầu nằm trên mp(Oyz) nên \(I\left( {0;b;c} \right)\). Ta tìm b và c để IA = IB = IC. Ta có:

\(\left\{ \matrix{ I{A^2} = I{B^2} \hfill \cr I{A^2} = I{C^2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {\left( {8 - b} \right)^2} + {c^2} = {4^2} + {\left( {6 - b} \right)^2} + {\left( {2 - c} \right)^2} \hfill \cr {\left( {8 - b} \right)^2} + {c^2} = {\left( {12 - b} \right)^2} + {\left( {4 - c} \right)^2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ b = 7 \hfill \cr c = 5 \hfill \cr} \right.\)

Vậy tâm \(I\left( {0;7;5} \right)\) bán kính

R = IA =\(\sqrt {0 + 1 + 25}  = \sqrt {26} \).

Mặt cầu có phương trình \({x^2} + {\left( {y - 7} \right)^2} + {\left( {z - 5} \right)^2} = 26\).

b) Vì tâm của mặt cầu nằm trên tia Ox và mặt cầu tiếp xúc với mp(Oyz) nên điểm tiếp xúc phải là O, do đó bán kính mặt cầu là R = IO = 2 và \(I\left( {2;0;0} \right)\).

Mặt cầu có phương trình \({\left( {x - 2} \right)^2} + {y^2} + {z^2} = 4\)

c) Vì mặt cầu có tâm \(I\left( {1;2;3} \right)\) và tiếp xúc với mp(Oyz), vậy R = 1. Mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 1\)