a) Giả sử \(M\left( {x;0;0} \right)\) thuộc trục Ox và MA = MB.
Ta có:\(\eqalign{
& \,\,\,\,\,\,\,M{A^2} = M{B^2} \cr
& \Leftrightarrow {\left( {1 - x} \right)^2} + {2^2} + {3^2} = {\left( { - 3 - x} \right)^2} + {\left( { - 3} \right)^2} + {2^2} \cr
& \Leftrightarrow 1 - 2x + {x^2} + 13 = 9 + 6x + {x^2} + 13 \Leftrightarrow x = - 1 \cr
& \Rightarrow M\left( { - 1;0;0} \right) \cr} \)b) Ta có:\(\eqalign{
& \overrightarrow {AB} = \left( {2;\sqrt 3 ;1} \right)\,;\,\overrightarrow {OC} = \left( {\sin 5t;\cos 3t;\sin 3t} \right) \cr
& AB \bot OC \Leftrightarrow \overrightarrow {AB} .\overrightarrow {OC} = 0 \cr
& \Leftrightarrow 2\sin 5t + \sqrt 3 \cos 3t + \sin 3t = 0 \cr
& \Leftrightarrow \sin 5t + {{\sqrt 3 } \over 2}\cos 3t + {1 \over 2}\sin 3t = 0 \cr
& \Leftrightarrow \sin 5t = - \sin \left( {3t + {\pi \over 3}} \right) \cr
& \Leftrightarrow \sin 5t = \sin \left( { - 3t - {\pi \over 3}} \right) \cr
& \Leftrightarrow \left[ \matrix{
5t = - 3t - {\pi \over 3} + k2\pi \hfill \cr
5t = \pi + 3t + {\pi \over 3} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
t = - {\pi \over {24}} + {{k\pi } \over 4} \hfill \cr
t = {{2\pi } \over 3} + k\pi \hfill \cr} \right.\,\left( {k \in\mathbb Z} \right) \cr} \)